Examplepictures of DNA-Structures

Stephan Grill - Biophysics

Morphogenesis refers to the generation of form in Biology. Our group is interested in understanding the biophysical basis of morphogenesis, how an unpatterned blob of cells develops into a fully structured and formed organism. We combine theory and experiment, and investigate force generation on multiple scales. At the level of cells and tissues we study how the actomyosin cell cortex self contracts, reshapes and deforms, and how these morphogenetic activities couple to regulatory biochemical pathways. At the level of molecules we investigate force generation and movement of individual molecules of RNA polymerases in the context of gene expression and transcriptional proofreading.

Research

Morphogenesis is one of the great remaining mysteries. Our lab combines experiment and theory to shed light on the physical mechanisms that underlie morphogenesis in cell biology and development.

“Our vision is to characterize the fundamental laws of morphogenesis that describe how cells and tissues can deform and restructure themselves. These laws define the rules of the game of morphogenetic processes, they provide the playing field on which regulatory molecular pathways are acting. We need ways of identifying them, and we need systematic approaches that link molecular scale physical mechanisms to those on cellular scales.”

 

Morphogenetic functions of actomyosin

The generation of form in biology is characterized by reshaping, deformation and flow. The forces that drive all these processes are generated by the actomyosin cortex. We are interested in characterizing the types of mechanical activities the actomyosin cortex can produce at cell and tissue scales for driving morphogenetic events. In particular, we investigate the physical basis of polarizing cortical flow in the early stages of life of the nematode Caenorhabditis elegans. Flow results from the ability of the actomyosin cortex to ‘contract’, a feature that emerges as a consequence of many molecules interacting; individual proteins cannot do this. We use imaging techniques to measure biophysical parameters such as flow velocity and alignment, and use UV laser ablation to measure cortical tension. We describe the mechanical basis of these cell biological events in terms of novel hydrodynamic descriptions of active materials, in terms of a thin film of an active viscous fluid. We use RNAi to perturb the function of different genes to characterize how they contribute to the mechanical behavior at cellular length and time scales.  At the multicellular scale, we have also identified a crucial role for flow of actomyosin into an actomyosin ring for driving epiboly during zebrafish gastrulation.We have recently discovered that the actomyosin cortex is able to generate torques of defined chirality, and a particular focus of our work is to understand the physical mechanisms by which active torque generation by actomyosin contributes to left/right symmetry breaking in development.

Actomyosin cortex of a one cell stage Caenorhabditis elegans embryo cut with a pulsed UV laser along the blue line. Non-muscle-myosin 2 is visualized by GFP fluorescence (pre-ablation image in magenta, post-ablation image in green). Note that the material moves away from the line of cut (arrows), revealing that the material is under mechanical tension. Scale bar, 5 µm. Modified from Mayer et al., Nature (2010).

 

 

Mechanochemical pattern formation

The generation of form is characterized by a coupling between mechanical events and biochemical regulation. Regulatory pathways direct the active deformation and reshaping of cells and tissues. Components of the regulatory pathways are transported by flow and deformation arising from active mechanical processes inside cells. In some instances of morphogenetic pattern formation one can successfully decouple the biochemistry from the mechanics. This is the approach that was taken sixty years ago by Alan Turing when he started the field of reaction-diffusion, but we are learning more and more that generally this is not possible. 

We have recently put forward a novel mechanism of biological pattern formation. Here,  stationary patterns in active fluids emerge because active stress gradients drive hydrodynamic flows which in turn advect the active stress regulator to counterbalance diffusive fluxes. We are investigating how this type of interplay between active mechanics and biochemical regulation leads to cell polarization. We study the establishment of cell polarity in the C. elegans zygote, a classical example of coupling of mechanical and biochemical pathways for enacting morphogenetic change. In particular, we have shed light on how cortical flow, through advection, triggers the formation of a pattern in the PAR polarity system to polarize the cell.

Anterior (red) and posterior (magenta) PAR domains during polarity establishment in the one cell stage C. elegans zygote. Scale bar, 10 µm. Modified from Goehring et al., Science (2011).

 

 

 

Micromechanics of transcription

The molecular machines that generate morphogenetic forces and transcription factors that control molecular pathways need to be produced. Transcription is the first step in gene expression, and we are interested in unraveling the micro-mechanical details that underly transcription by RNA polymerases. We use single-molecule high-resolution dual-trap optical tweezers to characterize molecule-scale force generation and movement by RNA polymerases. We study the molecular events that are at the heart of transcription, and how they give rise to more general types of behaviors such as transcriptional pausing and proofreading. We make use of theoretical approaches to understand how distinct kinetic mechanisms relate biophysical modes of operation to specific cellular roles and functions. For example, we recently described how intermittent transcription dynamics ensure high transcriptional fidelity.

A single molecule of RNA polymerase II walking along a DNA template in a dual trap optical tweezer. Transcription is intermittent and characterized by frequent pausing (red).

 

 

 

 

Open Positions

We are always looking for postdocs interested in our work, with either a cell/molecular biology background, a physics background, or a theory background. Please contact me should you have questions.

Curriculum Vitae

Education

  • 2013   Habilitation in Theoretical Physics, University of Leipzig
  • 2002   Doctoral degree in Physics, TU München
  • 1998   Diploma in Physics, University of Heidelberg

Academic Career

  • since 2013, Professor of Biophysics at the Biotechnology Center of TU Dresden
  • 2006 - 2013, Group-Leader, jointly at the Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden and the Max-Planck-Institute for the Physics of Complex Systems, Dresden
  • 2004 - 2005, Postdoctoral work at the Department of Physics, University of California in Berkeley
  • 2003, Postdoctoral work at MPI-CBG Dresden
  • 1998 - 2002, PhD work at EMBL Heidelberg

Awards and Grants

  • 2015    Raymond and Beverly Sackler International Prize in Biophysics
  • 2015    Newcomb Cleveland Prize 
  • 2015    Max-Planck-Fellow (MPI of Molecular Cell Biology and Genetics)
  • 2014    HFSP Program Grant 
  • 2013    Binder Innovation Prize of the German Society for Cell Biology
  • 2011    ERC Starting Grant
  • 2011    Paul Ehrlich- und Ludwig Darmstaedter-Nachwuchspreis
  • 2010    EMBO Young Investigator Award
  • 2009    ARCHES Award of the BMBF and the Minerva Foundation 
  • 2004    Helen Hay Whitney Foundation Postdoctoral Research Fellowship
  • 2004    EMBO Long Term Fellowship

Other Positions

  • since 2015, Member of the Scientific Advisory Board, Ingrid zu Solms-Stiftung
  • since 2014, Adjunct Associate Editor of Physical Review Letters, American Physical Society
  • since 2014, Dean of Studies, International Masters Program Nanobiophysics, TU Dresden
  • since 2013, Member of the Editorial Board of Cell Reports, Cell Press
  • since 2013, Member of the Editorial Board of Open Biology, Royal Society

Group Members

You can find a list of current group members here.

Publications

  1. V. Fitz, J. Shin, C. Ehrlich, L. Farnung, P. Cramer, V. Zaburdaev, Vasily, S. W. Grill, Nucleosomal arrangement affects single molecule transcription dynamics, PNAS, in press (2016)  
  2. D. Murray,  M. Jahnel, J. Lauer, M. J. Avellaneda, N. Brouilly, A. Cezanne, H. Morales-Navarrese, E. D. Perini, C. Ferguson, A. N.  Lupas, Y. Kalaidzidis, R. G. Parton, Robert G.; S. W. Grill+; M. Zerial+, An endosomal tether undergoes an entropic collapse to bring vesicles together, Nature, 537:107-111 (2016) +corresponding authorship
  3. E. Roldan, A. Lisica, D. Sachez-Taltavull, S. W. Grill, Stochastic resetting in backtrack recovery by RNA polymerases,  Physical Review E 93, 062411 (2016)
  4. A. Lisica, C. Engel, M. Jahnel, E. Roldan, E. A. Galburt, P. Cramer, S. W. Grill, Mechanisms of backtrack recovery by RNA polymerases I and II, PNAS 113(11):2946-51 (2016)
  5. A. Saha, M. Nishikawa, M. Behrndt , C.-P. Heisenberg, F. Jülicher, S. W. Grill, Determining physical properties of the cell cortex, Biophysical Journal 110(6):1421-9 (2016)
  6. S. R. Naganathan, T. C. Middelkoop, S. Fürthauer, S. W Grill, Actomyosin-driven left-right asymmetry: from molecular torques to chiral self organization, Current Opinion in Cell Biology 38:24 (2016)
  7. A. Patel, H.O. Lee, L. Jawerth, S. Maharana, M. Jahnel, M.Y. Hein, S. Stoynov, J. Mahamid, S. Saha, T. M. Franzmann, A. Pozniakovski, I. Poser, N. Maghelli, L.A. Royer, M. Weigert, E.W. Myers, S. Grill, D. Drechsel, A. A. Hyman, S. Alberti, A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation, Cell 162(5):1066 (2015) 
  8. M. L. Begasse, M. Leaver, F. Vazquez, S. W. Grill, A. A. Hyman, Temperature Dependence of Cell Division Timing Accounts for a Shift in the Thermal Limits of C. elegans and C. briggsae, Cell Reports doi:10.1016/j.celrep.2015.01.006 (2015)
  9. S. Naganathan, S. Fürthauer, M. Nishikawa, F. Jülicher, S. W. Grill, Active torque generation by the actomyosin cell cortex drives left-right symmetry breaking, ELife 3:e04165, doi:10.7554/eLife. 04165 (2014)
  10. B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer III, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill  J. T. Wang, G. Seydoux, U. Serdar Tulu, D. P. Kiehart, E. Betzig, Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution, Science 346, 1257998 (2014) 
  11. K. Vijay Kumar, J. S. Bois, F. Jülicher, S. W. Grill  Pulsatory patterns in active fluids, Physical Review Letters, doi:10.1103/PhysRevLett.112.208101 (2014)  
  12. P. Khuc-Trong, E. M. Nicola, N. W. Goehring, K. Vijay Kumar,  S. W. Grill, Parameter-space topology of models for cell polarity, New Journal of Physics, doi:10.1088/1367-2630/16/6/065009 (2014)
  13. E. Heller, K. V. Kumar, S. W. Grill   E Fuchs, Forces Generated by Cell Intercalation Tow
Epidermal Sheets in Mammalian Tissue Morphogenesis, Dev. Cell. 28, 617–632 (2014)
  14. M. Weitkunat, A. Kaya-Çopur,  S. W. Grill, F. Schnorrer, Tension and Force-Resistant Attachment Are Essential for Myofibrillogenesis in Drosophila Flight Muscle, Curr. Biol., doi:10.1016/j.cub.2014.02.032 (2014)
  15. M. Depken, J. M. R. Parrondo , S. W. Grill, Intermittent transcription dynamics for the rapid production of long transcripts of high fidelity, Cell Reports, doi:S2211-1247(13)00515-9 (2013)
  16. S. Fürthauer, M. Strempel, S. W. Grill, F. Jülicher, Active chiral processes in thin films, Physical Review Letters 110, 048103 (2013)
  17. N. W. Goehring,  S. W. Grill, Cell polarity: mechanochemical patterning, Trends Cell Biol. 23(2),72-80 (2013)
  18. B. T. Fievet, J. Rodriguez, S. Naganathan, C. Lee, E. Zeiser, T. Ishidate, M. Shirayama, S. W. Grill, J. Ahringer, Systematic genetic interaction screens uncover cell polarity regulators and functional redundancy, Nature Cell Biology, 15(1), 103-112 (2013)
  19. M. Behrndt, G Salbreux, P. Campinho, R. Hauschild, F. Oswald, J. Rönsch,S. W. Grill+, and C. P. Heisenberg+, Forces driving epithelial spreading in zebrafish gastrulation, Science ,338(6104), 257-260 (2012) +corresponding authorship
  20. S. Fürthauer, M. Strempel, S. W. Grill, F. Jülicher, Active chiral gels, European Physical Journal E 35(9):89 (2012)
  21. M. Mayer, G. Salbreux, S. W. Grill, Biophysics of cell developmental processes: A lasercutter’s perspective, Comprehensive Biophysics, 7, doi:10.1016/B978-0-12-374920-8.00715-3 (2012)
  22. S. Fürthauer, M. Neef, S. W. Grill, K. Kruse, F. Jülicher, The Taylor–Couette motor: spontaneous flows of active polar fluids between two coaxial cylinders, New Journal of Physics, 14, doi:10.1088/1367-2630/14/2/023001 (2012)
  23. N. Goehring, P. Khuc-Trong, J. S. Bois, D. Chowdhury, E. M. Nicola, A. A. Hyman, S. W. Grill, Polarization of PAR proteins by advective triggering of a pattern-forming system, Science 334(6059),1137-1141 (2011)
  24. L. Leung, A. Klopper, S. W. Grill, W. A. Harris, William A, C. Norden, Apical migration of nuclei during G2 is a prerequisite for all nuclear motion in zebrafish neuroepithelia, Development, 138(22), 5003-5013 (2011)
  25. S. W. Grill, Growing up is stressful: Biophysical laws of morphogenesis, Curr. Opin. Genet. Dev., doi:10.1016/j.gde.2011.09.005 (2011)
  26. M. Galli, J. Muñoz, V. Portegijs, M. Boxem, S. W. Grill, A. J. Heck, S. van den Heuvel S, aPKC phosphorylates NuMA-related LIN-5 to position the mitotic spindle during asymmetric division, Nature Cell Biology, 13(9), 1132-1138 (2011)
  27. E. A. Galburt, J. M.R. Parrondo, S. W. Grill, RNA polymerase pushing, Biophys. Chem., doi:10.1016/j.bpc.2011.04.009 (2011)
  28. J. Howard, S. W. Grill, J. S. Bois, Turing's next steps: the mechanochemical basis of morphogenesis, Nat. Rev. Mol. Cell. Biol.,12(6), 400-406 (2011)
  29. N. W. Goehring, C. Hoege, S. W. Grill+, A. A. Hyman+, PAR proteins diffuse freely across the anterior-posterior boundary in polarized C. elegans embryos, J. Cell. Biol., 193(3), 583-594 (2011) +corresponding authorship
  30. M. Jahnel, M. Behrndt, A. Jannasch, E. Schäffer,S. W. Grill, Measuring the complete force field of an optical trap, Opt. Lett., 36(7), 1260-1262 (2011)
  31. N. T. Chartier, D. P. S. Ospina, L. Benkemoun, M. Mayer, S. W. Grill, A. S. Maddox, J.-C. Labbé, PAR-4/LKB1 mobilizes nonmuscle myosin through anillin to regulate C. elegans embryonic polarization and cytokinesis, Current Biology, 21(4), 259-269 (2011)
  32. J. S. Bois, F. Jülicher S. W. Grill, Pattern formation in active fluids, Physical Review Letters 106, 28103 (2011)
  33. S. W. Grill, Forced to be unequal, Science, 330(6004), 597-598 (2010)
  34. N. W. Goehring, D. Chowdhury, A. A. Hyman, S. W. Grill, FRAP analysis of membrane-associated proteins: lateral diffusion and membrane-cytoplasmic exchange, Biophysical Journal 99(8), 2443-2452 (2010)
  35. M. Mayer, M. Depken, J. S. Bois, F. Jülicher, S. W. Grill, Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows, Nature 467, 617-621 (2010)
  36. A. V. Klopper, G. Krens, S. W. Grill, C. P. Heisenberg, Finite size corrections to scaling behavior in sorted cell aggregates, Eur. Phys. J. E, doi:10.1140/epje/i2010-10642-y (2010)
  37. A. V. Klopper, J. S. Bois, S. W. Grill, Influence of secondary structure on recovery from pauses during early stages of RNA transcription, Physical Review E 81, 030904(R) (2010)
  38. N. A. Licata, S. W. Grill, The first-passage problem for diffusion through a cylindrical pore with sticky walls, Eur. Phys. J. E 30(4), 439-447 (2009)
  39. E. A. Galburt, S. W. Grill, C. Bustamante, Single molecule transcription elongation, Methods 48(4), 323-332 (2009)
  40. M. Depken, E. A. Galburt, S. W. Grill, The origin of short transcriptional pauses, Biophysical Journal 96 (6), 2189-2193 (2009)
  41. E. A. Galburt+,S. W. Grill+, A. Wiedmann, L. Lubkowska, J. Choy, E. Nogales, M. Kashlev, C. Bustamante, Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner, Nature 446, 820-823 (2007) +equal first author
  42. J. Pecreaux, J. C. Röper, K. Kruse, F. Jülicher, A. A. Hyman, S. W. Grill, J. Howard, Spindle oscillations during asymmetric cell division require a threshold number of active cortical force generators, Current Biology 16(21), 2111-2122 (2006)
  43. Y. Zhang, C. L. Smith, A. Saha, S. W. Grill, S. Mihardja, S. B. Smith, B. R. Cairns, C. L. Peterson, C. Bustamante, DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC, Mol. Cell 24, 559–568 (2006)
  44. S. W. Grill, K. Kruse, F. Jülicher, Theory of mitotic spindle oscillations, Physical Review Letters 94 (10), 108104 (2005)
  45. H. A. Hess, J. C. Roeper, S. W. Grill, M. R. Koelle, RGS-7 completes a receptor-independent heterotrimeric G protein cycle to asymmetrically regulate mitotic spindle positioning in C. elegans, Cell 119 (2), 209-218 (2004)
  46. J. Colombelli, S. W. Grill, E. H. K. Stelzer, Ultraviolet diffraction limited nanosurgery of live biological tissues, Rev. of Sci. Inst. 75 (2), 472-478 (2004)
  47. S. W. Grill, J. Howard, E. Schäffer, E. H. K. Stelzer, A. A. Hyman, The distribution of active force generators controls mitotic spindle position, Science 301, 518-521 (2003)
  48. K. Colombo, S. W. Grill, R. J. Kimple, F. S. Willard, D. P. Siderovski, P. Gönczy, Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos, Science 300, 1957-1961 (2003)
  49. M. Kirkham, T. Müller-Reichert, K. Oegema, S. W. Grill, A. A. Hyman, SAS-4 is a C. elegans centriolar protein that controls centrosome size, Cell 112(4), 575-587 (2003)
  50. S. W. Grill, P. Gönczy, E. H. K. Stelzer, A. A. Hyman, Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo, Nature 409, 630-633 (2001)
  51. T. Dahm, J. White, S. W. Grill, J. Füllekrug, E. H. K. Stelzer, Quantitative ER <–> Golgi transport kinetics and protein separation upon Golgi exit revealed by vesicular integral membrane protein 36 dynamics in live cells, Mol. Biol. Cell. 12 (5), 1481-1498 (2001)
  52. P. Gönczy, S. W. Grill, E. H. K. Stelzer, M. Kirkham, A. A. Hyman, Spindle positioning during the asymmetric first cell division of C. elegans embryos, Novartis Found. Symp., 237, 164-75, C. Wylie (ed.) (2001)
  53. E. H. K. Stelzer, S. W. Grill, The Uncertainty Principle Applied to Estimate Focal Spot Dimensions, Opt. Commun. 173, 51-56 (2000)
  54. S. W. Grill, E. H. K. Stelzer, A Method to Calculate Lateral and Axial Gain Factors of Optical Setups With A Large Solid Angle, J. Opt. Soc. Am. A 16, 2658-2665 (1999)
  55. J. White, L. Johannes, F. Mallard, A. Girod, S. W. Grill, S. Reinsch, P. Keller, B. Tzschaschel, A. Echard, B. Goud, E. H. K. Stelzer, Rab6 Coordinates a Novel Golgi to ER Retrograde Transport Pathway in Live Cells, J. Cell Biol. 147, 743-759 (1999)

Teaching

Theoretical Biophysics 

Stephan Grill, Frank Jülicher 
Sommersemester 2015
Tuesday, 11:10-12:40 (3. DS), MPIPKS Seminar Room 3
Tutorials on Thursday, 14:50-15:35, MPIPKS Seminar Room 3 (Marko Popovic) 

Statistical Physics and Thermodynamics for Molecular and Cell Biology

Biopolymers
-Freely Jointed Chain, Stiffness, Equipartition
-Bead and Spring Model
-Semiflexible Polymer, Monge Representation
-Persistence Length

Biomembranes
-Differential Geometry Formalism
-Bending Energy, Monge Representation
-Gaussian Fluctuations
-Correlation Length

Biodynamics
-Langevin Equation, Fokker-Planck-Equation
-Linear Response and Correlations
-Fluctuation Dissipation Theorem
-Stochastic Motion in Periodic Potentials, Kramers Rates
-Detailed Balance


Biological Hydrodynamics

Stephan Grill, Jan Brugues 
Wintersemester 2015/2016
Time and location to be determined.

Hydrodynamics in Biology, with a Focus on Cell and Developmental Biology

Dynamics of Passive Fluids
-Navier-Stokes Equation
-Low Reynolds Number Hydrodynamics
-Hydrodynamic Interactions, Oseen Tensor
-Thin Films

Dynamics of Active Fluids
-Conservation Laws and Broken Symmetries
-Linear Response
-Onsager Relations
-Nematostatics
-Active Nematics
-Thin Film Active Fluids

Morphogenetic Pattern Formation
-Spatial Chemical Systems
-Bifurcation Theory
-Biological Pattern Formation
-Pattern Formation in Active Fluids

Contact

Prof. Dr. Stephan Grill
Technische Universität Dresden
Biotechnology Center
Tatzberg 47/49
01307 Dresden
Germany
Web www.biotec.tu-dresden.de/research/grill.html
Tel: +49 (0)351 463 40328
Fax: +49 (0)351 463 40342


Claudia Schwäger / Anja Heinrich
Administrative Assistant
Technische Universität Dresden
Biotechnology Center
Tatzberg 47/49
01307 Dresden
Germany
Tel: +49 (0)351 463 40329
Fax: +49 (0)351 463 40342 


Selected publications

 

Fitz, Veronika Fitz;  Shin, Jaeoh; Ehrlich, Christoph; Farnung, Lucas; Cramer, Patrick;  Zaburdaev, Vasily; Grill, Stephan W. Nucleosomal arrangement affects single molecule transcription dynamics, PNAS in press (2016)  

Murray, David; Jahnel, Marcus; Lauer, Janelle; Avellaneda, Mario J.; Brouilly, Nicolas; Cezanne, Alice; Morales-Navarrete, Hernán; Perini, Enrico D.; Ferguson, Charles; Lupas, Andrei N.; Kalaidzidis, Yannis; Parton, Robert G.; Grill, Stephan W.; Zerial, Marino An endosomal tether undergoes an entropic collapse to bring vesicles together, Nature 537, pp. 107-111 (2016) 

Lisica, Ana; Engel, Christoph;  Jahnel, Marcus; Roldan, Edgar; Galburt, Eric A.;  Cramer, Patrick; Grill, Stephan W. Mechanisms of backtrack recovery by RNA polymerases I and II, PNAS 113(11), pp. 2946-51 (2016)  

Naganathan, Sundar; Fürthauer, Sebastian; Nishikawa, Masatoshi; Jülicher, Frank; Grill, Stephan W. Active torque generation by the actomyosin cell cortex drives left-right symmetry breaking, ELife 3:e04165, doi:10.7554/eLife. 04165 (2014)

Vijay Kumar, Krishnamurthy; Bois, Justin S.; Jülicher, Frank; Grill, Stephan W. Pulsatory patterns in active fluids. Phys. Rev. Lett., doi:10.1103/PhysRevLett.112.208101 (2014)

Behrndt, Martin; Salbreux, Guillaume; Campinho, Pedro; Hauschild, Robert; Oswald, Felix; Roensch, Julia; Grill, Stephan W.; Heisenberg, Carl-Philipp Forces driving epithelial spreading in zebrafish gastrulation. Science 338, pp. 257-260, (2012)

Goehring, Nathan; Trong, Philipp Khuc; Bois, Justin; Chowdhury, Debanjan; Nicola, Ernesto M; Hyman, Anthony A.; Grill, Stephan W. Polarization of PAR Proteins by Advective Triggering of a Pattern-Forming System. Science 334, pp. 1137-1141, (2011)

Bois, Justin; Jülicher, Frank; Grill, Stephan W. Pattern formation in active fluids. Phys. Rev. Lett. 106, no. 2, (2011)

Mayer, Mirjam; Depken, Martin; Bois, Justin; Jülicher, Frank; Grill, Stephan W. Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 467, pp. 617-621, (2010)

To the top of this page.