Study regulations
for the consecutive master’s program
Regenerative Biology and Medicine
of xxx

Pursuant to Article 36 of the Law on Institutions of Higher Education in the Free State of Saxony (Sächsisches Hochschulgesetz - SächsHSG) of December 10, 2008 (Saxon law gazette p. 900), amended by article 10 of the law of June 26, 2009 (Saxon law gazette pp. 375, 377), the Technische Universität Dresden enacts the study regulations below as statutes.

(In these regulations masculine designations of persons apply to female persons too.)

Table of contents

§ 1 Scope
§ 2 Aims of the program
§ 3 Admission requirements
§ 4 Beginning and duration of the program
§ 5 Types of courses
§ 6 Structure and organisation of the program
§ 7 Contents of the program
§ 8 Credit points
§ 9 Study counselling
§ 10 Modification of module descriptions
§ 11 Entry into force and publication

Appendix 1: Module descriptions
Appendix 2: Study schedule
§ 1
Scope

Based on the Saxon Law on Institutions of Higher Education and the examination regulations, these study regulations govern the aims, content, structure and organisation of the Master’s program Regenerative Biology and Medicine at the Technische Universität Dresden.

§ 2
Aims of the program

(1) The masters program offers interdisciplinary education in the field of stem cells, regeneration biology, tissue engineering, and clinically focussed human biology and pathology with the aim to prepare students to perform research that can be applied to regenerative medicine therapies. The students know the scientific fundamentals of stem cell biology and regeneration model organisms as well as recent methods of genomic analysis of stem cells and model organisms, tissue engineering, current and potential applications in clinical diseases and regulatory aspects of developing regenerative therapies. Students are in command of essential methodological skills for presenting their work in oral and written form. This includes writing a term paper or a scientific article, writing a grant proposal and the organization and implementation of a clinical study.

(2) The course will qualify students for life sciences work and approaches. The students will be able to inter-relate elementary knowledge of molecular cell biology and developmental biology with specific theoretical and practical applications with in vitro and in vivo stem cell work which is relevant to regeneration and to human application. Students will be qualified to apply concepts and techniques in stem cell biology and animal models onto new research projects in regenerative biology and medicine. Altogether, the students will be enabled to work independently on academic or industry projects in a problem-oriented and responsible way. The students will have access to a wide range of R & D work fields, particularly in the areas of cell biology, developmental biology, stem cell biology and medicine.

§ 3
Admission requirements

(1) Providing proof of the eligibility (qualification) for the master program Regenerative Biology and Medicine is mandatory for the admission to the program.

(2) To be qualified and, thus, eligible for admission to the Master’s program Regenerative Biology and Medicine according to Paragraph 1, a candidate shall

1) furnish evidence of a first university degree in biology or medicine or a subject with a similar focus.

2) prove his proficiency in English, in case English is not his mother tongue. Evidence may be furnished through common international language tests (preferably IELTS: min. Level 6.0 or TOEFL: 550 points paper-based test) or a language certificate of TU Dresden (B2+ min. 2.0 or C1).
3) furnish evidence of his qualification for the Master’s program Regenerative Biology and Medicine. This includes sound knowledge of the fundamental principles in biology and basics in molecular and cell biology.

(3) The admission requirements and admission procedure as well as the appointment and tasks of the selection committee are regulated by a separate document, i.e. the admission regulations.

§ 4
Beginning and duration of the program

(1) The program generally starts in the winter semester.

(2) The standard period of study is four semesters and includes attendance of the courses as well as self-study and the master examination.

§ 5
Types of courses

(1) The structure of the program is modular. The content of the individual modules is conveyed, consolidated and treated in-depth in lectures, seminars, exercises and practicals.

(2) In lectures the students are introduced to the topics specified in the module descriptions. In the exercises students apply the theory that they learned in the lectures in exemplary sub-topics. Seminars are intended for developing the student’s ability to deal with a problem mainly on the basis of literature and other material, to present the results of his work in written or oral form. Practicals are intended for the practical application and in-depth treatment of the content conveyed in the lectures.

§ 6
Structure and organisation of the program

(1) The structure of the program is modular. Semester 1-3 are dedicated to coursework. The fourth semester is reserved for the writing of the Master’s thesis and the defense.

(2) The Master’s program consists of 10 compulsory modules totalling 90 credit points. For the thesis and the defense 30 credit points are awarded.

(3) The contents and qualification aims, the types of courses, the necessary requirements, work load and duration of the modules are specified in the module descriptions (appendix 1).

(4) The courses are taught in English.

(5) The appropriate distribution of the modules over semester 1-3 ensuring the timely completion of the program in the standard period of study, as well as type and scope of the courses and number and suggested standard date of the course requirements and exams are specified in the study schedule (appendix 2).
§ 7
Contents of the program

(1) The master program Regenerative Biology and Medicine is research-oriented.

(2) The masters program offers interdisciplinary education in the field of stem cells, regeneration biology, tissue engineering, and clinically focused human biology and pathology with the aim to prepare students to perform research that can be applied to regenerative medicine therapies. The program combines theory with extensive practical experience in the research laboratory with focus on the scientific fundamentals of stem cell biology and regeneration model organisms as well as recent methods of genomic analysis of stem cells and model organisms, tissue engineering, current and potential applications in clinical diseases. Students will also learn essential skills for presenting their work in oral and written form.

§ 8
Credit Points

(1) The successful progression of the studies as well as the workload for the students is documented by the award of ECTS credits. One credit point is equivalent to a workload of 30 hours. The workload per academic year is typically 60 credit points, i.e. 30 per semester. The total workload for the whole program is 120 credit points and includes the types of courses, course requirements and exams as well as the master thesis and the defence as specified by the module descriptions.

(2) The module descriptions (appendix 1) specify how many credit points are awarded for each module. The credits are obtained when the module examination is passed. Article 26 of the examination regulations remains unaffected.

§ 9
Study counselling

(1) The general study counselling on study opportunities, enrolment procedures and general student affairs is provided by the Student Advisory Service of the Technische Universität Dresden and the BIOTEC student office. Continuous study counselling is provided by the university teachers who are active in the program and the BIOTEC study and examination office. This is to support students especially in matters of their individual study plans.

(2) Students who have not taken any examinations until the 3rd semester must take part in a study counselling session at the beginning of the 3rd semester.
§ 10
Modification of module descriptions

(1) In order to ensure an optimal adaptation to changed conditions, the module descriptions can be modified in a simplified procedure except for the points “module name”, “contents and qualification aims”, “type of course”, “requirements for the award of credits” as well as “credits and grades”.

(2) Upon proposal of the study committee the Scientific Board of BIOTEC thus formally resolves upon changes in the module descriptions. The changes shall be published in accordance with the relevant provisions for publications.

§ 11
Entry into force and publication

The study regulations shall enter into force on October 1, 2010 and be published in the Official Publications (Amtliche Bekanntmachungen) of the Technische Universität Dresden.

Enacted on the basis of the resolution of the Scientific Board of BIOTEC on ... and the approval of the Rectorate of TU Dresden on xxx

Dresden, xxx

The Rector of the Technische Universität Dresden
Appendix 1: Module Descriptions for the master’s program
Regenerative Biology and Medicine

<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Responsible Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-RM B1</td>
<td>Stem cells, development and regeneration</td>
<td>Prof. Tanaka</td>
</tr>
</tbody>
</table>

Contents and qualification aims

After successful completion of the module the students know fundamental definitions and concepts of the major stem cell systems, theoretical and practical aspects of somatic stem cell biology and the fundamental principles and molecular mechanisms that underlie the development of vertebrates, organogenesis and regeneration.

Type of course

4 SWS lecture

Requirements for study

Basic knowledge in molecular, cell and developmental biology on Bachelor level

Practical use of the module

Compulsory module in the master’s program of Regenerative Biology and Medicine

Requirements for the award of credits

The credit-points are acquired, if the module examination is successfully passed. The module examination is a written exam (duration 120 minutes).

Credits and grades

For the module 6 credit-points can be awarded. The overall module grade is the grade of the written exam.

Frequency of the course

The module is offered every academic year in winter semester.

Workload

The workload is 180 working hours.

Duration of the module

1 semester

Literature

<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Responsible Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-RM R1</td>
<td>Model organism research</td>
<td>Prof. Tanaka</td>
</tr>
</tbody>
</table>

Contents and qualification aims

By the end of the course the students have acquired advanced theoretical knowledge in working with at least one of the major model organisms used for regenerative biology research, including state-of-the-art knowledge on the most recent research results emerging from work on the system. Second, they receive direct instruction on how to design and perform experiments to test hypotheses on regeneration work on the model. Third, they gain extensive practical laboratory experience on experimental protocols on the model organism.

Type of course

2 SWS lecture, 2 SWS exercise, 20 SWS lab practical

Requirements for study

Basic knowledge of anatomy and biology on Bachelor level

Practical use of the module

Compulsory module in the master’s program Regenerative Biology and Medicine.

Requirements for the award of credits

The credit-points are acquired, if the module examination is successfully passed. The module examination consists of:
- a written term paper (150 hours)
- and an oral exam (individual exam, duration 20 minutes)

Credits and grades

For the module 16 credit-points can be awarded. The module grade is the weighted average of the 2 grades:
- 2/3 term paper
- 1/3 oral exam

Frequency of the course

The module is offered every semester.

Workload

The workload is 480 working hours.

Duration of the module

1 semester

Literature

- Emerging Model Organisms (CSHL Press)
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Responsible Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-RM R2</td>
<td>Cell and organ based research</td>
<td>Prof. Bonifacio</td>
</tr>
</tbody>
</table>

Contents and qualification aims

By the end of the course the students have acquired advanced theoretical knowledge in working with cell systems e.g. ES cells, somatic stem cells, and organ systems such as the hematopoietic cells, pancreas, central nervous system, and heart. This instruction includes state-of-the-art knowledge on the most recent research results emerging from work on the system. Second, students receive direct instruction on how to design and perform experiments to test hypotheses on cell-based regenerative strategies. Third, they gain extensive practical laboratory experience on experimental protocols in cell and organ work.

Type of course

2 SWS lecture, 2 SWS exercise, 20 SWS lab practical

Requirements for study

Basic knowledge in stem cell biology, biochemistry and physics, basic concepts of molecular and cell biology on Bachelor level

Practical use of the module

Compulsory module in the master’s program Regenerative Biology and Medicine.

Requirements for the award of credits

The credit-points can be acquired, if the module examination is successfully passed. The module examination consists of:

- a written term paper (150 hours)
- and an oral exam (individual exam, duration 20 minutes)

Credits and grades

For the module 16 credit-points can be awarded. The module grade is the weighted average of the 2 grades:

- 2/3 term paper
- 1/3 oral exam

Frequency of the course

The module is offered every semester.

Workload

The workload is 480 working hours.

Duration of the module

1 semester.
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Responsible Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-RM R3</td>
<td>Molecular Biology Research</td>
<td>Prof. Kempermann</td>
</tr>
</tbody>
</table>

Contents and qualification aims

By the end of the course the students have acquired advanced theoretical knowledge in molecular biology as related to stem and tissue cell research. This instruction includes state-of-the-art knowledge on the most recent techniques used in molecular biology. Second, the students receive direct instruction on how to design and perform experiments in molecular biology to generate reagents and to analyze stem cells and tissues. Third, they gain extensive practical laboratory experience on experimental protocols in molecular biology.

Type of course

2 SWS lecture, 2 SWS exercise, 20 SWS lab practical

Requirements for study

Basic knowledge of molecular biology on Bachelor level

Practical use of the module

Compulsory module in the master’s program Regenerative Biology and Medicine.

Requirements for the award of credits

The credit-points can be acquired, if the module examination is successfully passed. The module examination consists of:

- term paper (150 hours)
- oral exam (individual exam, duration 20 minutes)

Credits and grades

For the module 16 credit-points can be awarded. The module grade is the weighted average of the 2 grades:

- 2/3 term paper
- 1/3 oral exam

Frequency of the course

The module is offered every semester.

Workload

The workload is 480 working hours.

Duration of the module

1 semester
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Responsible Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-RM P1</td>
<td>Light and Electron Microscopy</td>
<td>Prof. Tanaka</td>
</tr>
</tbody>
</table>

Contents and qualification aims

Students acquire an overview over basic and high-end microscopy. Topics that will be covered include basic ray optics, basic wave optics, fluorescence microscopy, digital imaging, electron optics, electron microscopy in the life sciences, preparation of biological samples for TEM and SEM, semi- and ultrathin sectioning, immunogold labeling, microscopy (TEM/SEM)

The students will know the basic principles of light and electron optics and will be able to analyse biological samples with widefield, fluorescence, and confocal microscopes, as well as with TEM and SEM. In addition, they will know basic methods for preparing tissues for light and electron microscopic analysis.

Type of course

Lecture and practical course, organised as a block of 2 weeks (1/3 lecture, 2/3 practical)

Requirements for study

Basic knowledge in optics, cell biology and histology, esp. of model organisms on Bachelor level, knowledge of electron optics and/or fluorescence microscopy on Bachelor level

Practical use of the module

Compulsory module in the master’s program Regenerative Biology and Medicine.

Requirements for the award of credits

The credit-points are acquired, if the module examination is successfully passed. The module examination consists of:

- an oral examination (individual exam, duration 30 minutes)
- and a protocol

Credits and grades

For the module 6 credit-points can be awarded. The overall module grade is the unweighted average of the 2 grades.

Frequency of the course

The module is offered every academic year in winter semester.

Workload

The workload is 180 working hours.

Duration of the module

1 semester

Literature

<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Responsible Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-RM B2</td>
<td>Genetic and Quantitative Analysis of Stem Cell Biology</td>
<td>Prof. Kempermann</td>
</tr>
</tbody>
</table>

Contents and qualification aims

By the end of the course students know genomic technologies and systems biology approaches for studying stem cells. Students will understand:

- classical genetic approaches to stem cell biology in model organisms
- gene regulatory mechanisms determining key events such as the switch between proliferation and differentiation
- functional methods to identify and target genes relevant to stem cell fate
- strategies to manipulate stem cells on a molecular basis
- the principles of systems biology approaches versus conventional strategies

Students will also be familiar with methods for the analysis of quantitative biological data. The module will introduce methods from computational biology and biostatistics for the analysis of small and large experimental datasets, focussing on methods for the analysis of molecular biology and genetics data. Students will be able to:

- perform statistical analysis of experimental data
- analyze large-scale biological datasets (such as genome wide measurements or sequencing data)
- understand data integration and modeling techniques for the system-level analysis of biological processes

Type of course

2 SWS lecture, 2 SWS exercise

Requirements for participation

Basic knowledge of cell biology and human biology on Bachelor level

Practical use of the module

Compulsory module of master’s program of Regenerative Biology and Medicine

Requirements for the award of credits

The credit points are acquired, if the module examination is successfully passed. The module examination consists of:

- a written exam (duration 90 minutes)
- and a protocol

Credits and grades

For this module 6 credit points can be awarded. The overall module grade is the weighted average of the 2 grades:

- 2/3 written examination
- 1/3 protocol

Frequency of

The module is offered every academic year in summer semester.
<table>
<thead>
<tr>
<th>course</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The workload is 180 working hours.</td>
</tr>
<tr>
<td>Duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module Number</td>
<td>Module Name</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>BT-RM P2</td>
<td>Scientific Working Methods and Scientific Conduct</td>
</tr>
</tbody>
</table>

Contents and qualification aims

By the end of the course the students will know scientific working methods and issues of appropriate versus inappropriate conduct in scientific studies, and the conflicts that can arise. By the end of the course the students will know:

- How to prepare and present a scientific talk
- What makes a good and bad scientific manuscript
- How to identify fundable research projects
- How to distinguish successful strategies for preparing and submitting research proposals
- The importance and laws of intellectual property
- How to determine what can/should be patented
- What is considered proper ethical behavior in scientific investigations
- How to detect fraudulent behavior
- How to respond when fraudulent and other ethical behaviors have potentially been discovered.

Type of course

3 SWS seminar

Requirements for study

Basic knowledge of professional writing skills, basic knowledge in cell, molecular and developmental biology on Bachelor level

Practical use of the module

Compulsory module of master’s program of Regenerative Biology and Medicine

Requirements for the award of credits

The credit-points are acquired, if the module examination is successfully passed. The module examination consists of:

- An oral presentation
- And an essay (40 hours)

Credits and grades

For the module 6 credit-points can be awarded. The module grade is the unweighted average of the grades of the 2 exams.

Frequency of the course

The module is offered every academic year, starting in winter term

Workload

The workload is 180 working hours.

Duration of the module

2 semesters
Contents and qualification aims	By the end of the course students know the basics of regulatory requirements in the EU and in Germany for clinical research in humans. They will have gained an overview of the German drug law and Good Clinical Practice (GCP)-the international quality standard for clinical trials. EU regulations on advanced cellular therapeutics and local regulations of cell-based therapeutics will be introduced including the requirements of Good Manufacturing Practice (GMP) and genetic manipulation of cells within clinical trials. Students will be familiar with the basics of planning and executing phase I-III trials with an experimental therapy. They will have an overview of the required infrastructure, preclinical data and bioinformatics required to design an investigator-initiated study. They also know the Declaration of Helsinki and patients’ rights policies. Students will be introduced into the essential documents of clinical protocols, e.g. investigator’s brochure, patient information and informed consent. An own trial synopsis will be developed and discussed. Exercises for completing a case report form as the first step in a data management due to GCP will be performed. In addition, students will join clinician researchers, documentation assistants and study nurses during their practical work including patient and data management and CRF. Students will have a basic understanding of regulatory requirements and preclinical studies including toxicological testing, metabolism and pharmacology which have to be fulfilled before starting a clinical trial. They are also familiar with the tasks and obligations of sponsor and an investigator according to GCP.
Type of course	2 SWS lecture and 3 SWS exercise
Requirements for study	Basic knowledge in pathophysiology and human diseases on Bachelor or Physikum level, principal knowledge of biometrical analyses and statistics on Bachelor or Physikum level
Practical use of the module	Compulsory module of the master’s program of Regenerative Biology and Medicine
Requirements for the award of credits	The credit-points can be acquired, if the module examination is successfully passed. The module examination consists of:
• a written test (duration 60 minutes)	
• and an oral examination (individual exam, duration 15 minutes).	
Credits and grades	For the module 6 credit-points can be awarded. The module grade is the weighted average of the 2 grades:
• 2/3 written test
• 1/3 oral exam |
<table>
<thead>
<tr>
<th>Frequency of the course</th>
<th>The module is offered every academic year in summer semester.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>The workload is 180 working hours.</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Literature</td>
<td>- Stuart J. Pocock, Clinical Trials, a practical approach</td>
</tr>
<tr>
<td></td>
<td>- Fundamentals of Clinical Trials by Lawrence M. Friedman, Curt D. Furberg, David L. DeMets</td>
</tr>
<tr>
<td>Module Number</td>
<td>Module Name</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>BT-RM B3</td>
<td>Organ Systems and Disease</td>
</tr>
</tbody>
</table>

Contents and qualification aims

By the end of the course students are familiar with clinical concepts of diseases in which regenerative medicine could provide therapeutic benefit. Focus areas include neuroregenerative medicine in brain and spinal cord diseases, retinal degeneration, diabetes, cardiovascular disease, haematopoiesis, angiology, and bone and cartilage engineering.

They will have gained an overview of structure and function of the affected organ systems, including their development, morphology and physiology. The course also introduces students to disease pathophysiology, clinical presentation and current standards of care, current problems and concepts of regenerative approaches in these diseases, translational aspects of regenerative medicine, and strategies/tools for studying regeneration. Students will obtain a basic theoretical knowledge of disease pathology and an advanced knowledge of how regeneration of cells and tissues could be applied to correct the pathology.

Type of course

6 SWS Lecture

Requirements for study

Basic knowledge in stem cell biology, biochemistry and physics, basic concepts of molecular and cell biology on Bachelor level

Practical use of the module

Compulsory module in the master’s program Regenerative Biology and Medicine

Requirements for the award of credits

The credit-points are acquired, if the module examination is successfully passed. The module examination consists of:
- a written test (duration 45 minutes)
- an oral exam (individual exam, duration 20 minutes)

Credits and grades

For the module 6 credit-points can be awarded. The module grade is the weighted average of the 2 grades:
- 2/3 written test
- 1/3 oral exam

Frequency of the course

The seminar is offered every academic year, starting in summer semester.

Workload

The workload is 180 working hours.

Duration of the module

2 semesters
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Responsible Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-RM B4</td>
<td>Materials Science and Tissue Engineering</td>
<td>Prof. Werner</td>
</tr>
</tbody>
</table>

Contents and qualification aims

By the end of the course students know the fundamentals in tissue engineering and the challenges of imitating natural tissue contexts. They are familiar with the tools from biology, chemistry and physics that are necessary to control tissue development in vitro. This course establishes the fundamental concepts of designing artificial scaffolds tailored for specific clinical applications. It is meant to parallel questions addressed in the medical part of the master course.

By the end of the course the students will know the governing principles of engineering tissues. They will understand the rationale for tailoring chemical and mechanical properties of materials for specific medical applications. They will know about the most current research in bioengineering and are able to prepare basic matrices for tissue replacement.

<table>
<thead>
<tr>
<th>Type of course</th>
<th>2 SWS lecture and 2 SWS practical course.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements for study</td>
<td>fundamentals in cell biology, concepts in polymer chemistry, physics on Bachelor level</td>
</tr>
<tr>
<td>Practical use of the module</td>
<td>Compulsory module of master’s program of Regenerative Biology and Medicine</td>
</tr>
<tr>
<td>Requirements for the award of credits</td>
<td>The credit-points can be acquired, if the module examination is successfully passed. The module examination is a written exam (duration 90 min)</td>
</tr>
<tr>
<td>Credits and grades</td>
<td>For the module 6 credit-points can be acquired. The module grade is based on the grade of the written exam.</td>
</tr>
<tr>
<td>Frequency of the course</td>
<td>The module is offered every academic year in winter semester.</td>
</tr>
<tr>
<td>Workload</td>
<td>The workload is 180 working hours.</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Literature</td>
<td>Principles of Tissue Engineering Robert Lanza (Editor), Robert Langer (Editor), Joseph P. Vacanti (Editor)</td>
</tr>
</tbody>
</table>
Appendix 2 – Study schedule of the master program Regenerative Biology and Medicine

defining type and scope of the courses (in SWS) as well as number of exam requirements whose type, scope and organisation are specified in the module descriptions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-RM B1</td>
<td>Stem Cells, Development and Regeneration</td>
<td>4/0/0/0 1xPL</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BT-RM R1</td>
<td>Model Organism Research</td>
<td>2/2/0/0 2xPL</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>BT-RM R2</td>
<td>Cell and Organ Based Research</td>
<td>2/2/0/0 2xPL</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>BT-RM R3</td>
<td>Molecular Biology Research</td>
<td>2/2/0/0 2xPL</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>BT-RM P1</td>
<td>Light and Electron Microscopy</td>
<td>2 Wochen V/P 2xPL</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BT-RM B2</td>
<td>Genetic and Quantitative Analysis of Stem Cell Biology</td>
<td>2/2/0/0 2xPL</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BT-RM B3</td>
<td>Organ Systems and Disease</td>
<td>4/0/0/0 1xPL</td>
<td>2/0/0/0 1xPL</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BT-RM P2</td>
<td>Scientific Working Methods and Conduct</td>
<td>0/0/1/0 1xPL</td>
<td>0/0/2/0 1xPL</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BT-RM B4</td>
<td>Materials Science and Tissue Engineering</td>
<td>0/0/2/0 1xPL</td>
<td>2/0/0/2 1xPL</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BT-RM P3</td>
<td>Clinical Translation and Trials in Practice</td>
<td>2/3/0/0 2xPL</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Master thesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>defense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total credits</td>
<td></td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>120</td>
</tr>
</tbody>
</table>

SWS: Semesterwochenstunden (hours per week, 1SWS=45 min per week over the whole semester), PL: Prüfungsleistung (examination)
L: Lecture, E: Exercise, S: Seminar, P: Practical