Study regulations
for the consecutive master’s program
Nanobiophysics
of 20.07.2015

Pursuant to Article 36 par.1 of the Law on Institutions of Higher Education in the Free State of Saxony (Sächsisches Hochschulfreiheitsgesetz - SächsHSFG) of January 15, 2013 (Saxon law gazette p. 3), amended by article 11 of the law of April 29, 2015 (Saxon law gazette pp. 349, 354), the Technische Universität Dresden enacts the study regulations below as statutes.

(In these regulations masculine designations of persons apply to female persons too.)

Table of contents

§ 1 Scope
§ 2 Aims of the program
§ 3 Admission requirements
§ 4 Start and duration of the program
§ 5 Types of courses
§ 6 Structure and organisation of the program
§ 7 Contents of the program
§ 8 Credit points
§ 9 Study counselling
§ 10 Modification of module descriptions
§ 11 Entry into force, publication and transitional rules

Appendix 1: Module descriptions
Appendix 2: Study schedule
§ 1
Scope

Based on the Saxon Law on Institutions of Higher Education and the examination regulations, these study regulations govern the aims, content, structure and organisation of the consecutive Master’s program Nanobiophysics at the Technische Universität Dresden.

§ 2
Aims of the program

(1) On the basis of the discussed methods and different scientific approaches the students are able to conduct independent scientific research. The students can work on complex problems and solve them with scientific methods that may even lie beyond their current state of knowledge. The students have gained a subject-related expertise that is based on current research questions, methodological and analytical skills enabling them to independently broaden their scientific knowledge. In this, research methods and strategies play a central role. The students are able to think across scientific boundaries, communicate scientifically on a multidisciplinary level and solve economic problems.

(2) Through a sound training in physics, biology and polymer and material science from a nanoscopic view i.e. by using the wide variety of modern nanotechnological approaches and single-molecule based methods the students are able to understand molecular machines quantitatively, to use and manipulate them, to adapt and develop them for technical processes. The students know the basics of biophysics and bionanotechnology and are able to characterise and understand complex molecular machines as e.g. biomolecules with the help of nanotechnological approaches as well as harness these modules in technological systems and use them as templates or model systems for a bottom-up nanotechnology. They have acquired an analytical-technical profile.

(3) A graduate in Nanobiophysics has extensive knowledge of modern experimental and theoretical biophysics and a sound background and experimental experience with biological systems from biochemistry to molecular cell biology. He knows the most important concepts and methods in nanotechnology as well as different modern single-molecule methods in theory and practice and has a basic background in material sciences. Graduates are qualified to work in R&D labs/departments in an interdisciplinary context and are able to assess the economic aspects and relevance of their work.

§ 3
Admission requirements

(1) Providing proof of the eligibility (qualification) for the master program Nanobiophysics is mandatory for the admission to the program.

(2) To be qualified and, thus, eligible for admission to the Master’s program Nanobiophysics according to par. 1, a candidate shall

1) furnish evidence of a first university degree or degree of a state or state-approved university of cooperative education in science (typically physics or biophysics) or engineering (typically Nanotechnology) or a subject with a similar inclination towards higher mathematics.
2) prove his proficiency in English, in case English is not his mother tongue. Evidence may be furnished through common international language tests (preferably IELTS: min. Level 6.5 or TOEFL: 600 points paper-based test).

3) furnish evidence of his qualification for the Master’s program Nanobiophysics. Evidence shall be furnished as specified by the separate admission regulations (Eignungsfeststellungsordnung).

§ 4
Start and duration of the program

(1) The program generally starts in the winter semester.

(2) The standard period of study is four semesters and includes attendance of the courses as well as self-study, practicals under supervision and the master examination.

§ 5
Types of courses

(1) The structure of the program is modular. The content of the individual modules is conveyed, consolidated and treated in-depth in lectures, seminars, tutorials, exercises and practicals.

(2) In lectures the students are introduced to the topics specified in the module descriptions. In the exercises students apply the theory that they learned in the lectures in exemplary sub-topics. Tutorials refer to the lectures and are intended for a thorough repetition of the lecture content and, if applicable, its in-depth treatment. Seminars are intended for developing the student’s ability to deal with a problem mainly on the basis of literature, documentation or other papers, to present the results of his work in written or oral form. Practicals are intended for the practical application and in-depth treatment of the content conveyed in the lectures.

§ 6
Structure and organisation of the program

(1) The structure of the program is modular. Semester 1-3 are dedicated to coursework. The fourth semester is reserved for the writing of the Master’s thesis and the defense.

(2) The master program is subdivided into the track Molecular Biophysics and the track Nanoscience and Nanotechnology. Students need to choose one track when they apply for the program. The choice of the track Nanoscience and Nanotechnology is only possible if students have also been admitted for the Erasmus Mundus program Nanoscience and Nanotechnology. The track Molecular Biophysics comprises of 13 obligatory modules. In the track Nanoscience and Nanotechnology students need to spend their first year at KU Leuven in Belgium in the framework of a joint program. The details are specified in an agreement between the cooperating universities. The course and exam requirements are equivalent to the ones in the local master program Nanoscience and Nanotechnology at KU Leuven. In the
second year students choose between the two specializations Biophysics and Nanoelectronics. The course comprises in both specializations four obligatory modules. (3) The contents and qualification aims, the types of courses, the necessary requirements, workload and duration of the modules are specified in the module descriptions (appendix 1). (4) The courses are taught in English. (5) The appropriate distribution of the modules over semester 1-3 ensuring the timely completion of the program in the standard period of study, as well as type and scope of the courses and number and suggested standard date of the course requirements and exams are specified in the study schedule (appendix 2). (6) Upon proposal by the study committee the Scientific Board of the BIOTEC may update the list of electives and the study schedule. The modified study schedule is valid for all students whom have been informed as is customary at the Biotechnology Center at the start of the study program. The examination committee decides on exceptions to sentence 2.

§ 7
Contents of the program

(1) The master program Nanobiophysics is research-oriented. (2) The program offers an interdisciplinary training in the field of molecular and cellular biophysics from a molecular or nanotechnological perspective. (3) The track Molecular Biophysics covers topics from the fields of biology, biophysics and polymer physics. Nanotechnology is firstly approached from the angle of nanobiotechnology to pinpoint basic interdisciplinary concepts. The focus is on bio- and nanophysics. The students gain a broad overview over molecular and cellular biophysics and molecular nanostructures and –machines in theory and experiments. To stress the molecular approach, the program also covers modern single molecule techniques (single molecule optics, scanning probe techniques) that are fundamental in both bio- and nanophysics. (4) The track Nanoscience and Nanotechnology covers basic concepts of molecular biology and biochemistry. The specialization Nanoelectronics covers molecular electronics, nanooptics, concepts of molecular modeling and molecular magnetism. The specialization Biophysics covers applied biophysics, biophysical methods and cellular machines.

§ 8
Credit Points

(1) The successful progression of the studies as well as the workload for the students is documented by the award of ECTS credit points. One credit point is equivalent to a workload of 30 hours. The workload per academic year is typically 60 credit points, i.e. 30 per semester. The total workload for the whole program is 120 credit points and includes the types of courses, course requirements and exams as well as the master thesis and the defence as specified by the module descriptions.
(2) The module descriptions (appendix 1) specify how many credit points are awarded for each module. The credits are obtained when the module examination is passed. § 26 of the examination regulations remains unaffected.

§ 9

Study counselling

(1) The general study counselling on study opportunities, enrolment procedures and general student affairs is provided by the Student Advisory Service of the Technische Universität Dresden and the BIOTEC student office. Continuous study counselling is provided by the university teachers who are active in the program and the BIOTEC study and examination office. This is to support students especially in matters of study planning.

(2) Students who have not taken any examinations until the 3rd semester must take part in a study counselling session.

§ 10

Modification of module descriptions

(1) In order to ensure an optimal adaptation to changed conditions, the module descriptions can be modified in a simplified procedure except for the points “module name”, “contents and qualification aims”, “type of course”, “requirements for the award of credits” as well as “credits and grades”.

(2) Upon proposal of the study committee the Scientific Board of BIOTEC thus formally resolves upon changes in the module descriptions. The changes shall be published in accordance with the relevant provisions for publications.

§ 11

Entry into force, publication and transitional rules

(1) The study regulations shall enter into force on October 1, 2010 and be published in the Official Publications (Amtliche Bekanntmachungen) of the Technische Universität Dresden.

(2) They are applicable to the students enrolled in the master’s program Nanobiophysics from winter semester 2010/11.

(3) The students who have been enrolled before winter semester 2010/11 shall complete the program on the basis of the study regulations for the master’s program Nanobiophysics applicable for them.

Enacted on the basis of the resolution of the Scientific Board of BIOTEC on 19.08.2010 and the approval of the Rectorate of TU Dresden on 21.01.2014.

Dresden, 20.07.2015
The Rector of the Technische Universität Dresden

Prof. Dr.-Ing. habil. Deng/Auckland Hans Müller-Steinhagen
Appendix 1: Module Descriptions for the Master’s program

Nanobiophysics

<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Resp. Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-NB 1.1.</td>
<td>Fundamentals of Biophysics</td>
<td>Jochen Guck</td>
</tr>
</tbody>
</table>

Contents and qualification aims

The students are familiar with concepts of phenomenological thermodynamics: energy, entropy, transport phenomena, biologically active forces, classical reaction and enzyme kinetics, bioenergetics as well as membrane biophysics and basics of electrophysiology.

They know the most important methods with respect to molecular, cellular and systems biophysics as well as structural methods (NMR, X-Ray), spectroscopy and microscopy, modern methods in biochemistry and proteomics.

Students have an overview over the most important concepts and the broad methodology of modern applied biophysics. They are able to select the best method(s) for a certain practical task and have background knowledge about their prerequisites and which systems to best apply them to.

Type of course

4 SWS lecture, 2 SWS seminar, 1 SWS lab practical

Requirements for study

Basic knowledge in mathematics, particularly differential and integral calculus, simple differential equations on Bachelor level. Basic knowledge in classic physics (mechanics, electrodynamics, thermodynamics) on Bachelor level.

Literature:
- Courant & Hilbert: Methods of Mathematical Physics
- Jackson: Classical Electrodynamics
- Sakurai: Advanced Quantum Mechanics
- Huang: Introduction to Statistical Physics

Practical use of the module

Compulsory module of the master’s program Nanobiophysics, track Molecular Biophysics

Requirements for the award of credits

The credits are awarded if the module examination is passed. The module examination consists of:
- a presentation,
- a written examination (90 minutes) and
- a lab protocol.

Credits and grades

For the module 10 credit points can be acquired. The module grade is the weighted average of:
- 2/5 presentation
- 2/5 written examination
- 1/5 lab protocol

Frequency of the course

The module is offered every academic year in winter semester.

Workload

The workload is 300 working hours

Duration of the module

1 semester
<table>
<thead>
<tr>
<th>Contents and qualification aims</th>
<th>The students are provided with a comprehensive overview of the fundamentals of structural biology and methods and applications in current computational biology/chemistry. The students are familiar with essential structural properties of biomolecules (proteins, peptides, sugars, nucleic acids) that underlie their great structural and functional variety in nature. The students have an overview of basic concepts needed to quantitatively understand the implications of the three-dimensional structure of these biomolecules for their stability, dynamics, molecular recognition and function. The students know how to analyze biological problems from a structural point of view. They gain insights into the bases needed to define and develop structure-based rational engineering strategies for bio- and nanotechnology.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of course</td>
<td>2 SWS lecture and 2 SWS seminar</td>
</tr>
</tbody>
</table>
| Requirements for study | Basic knowledge of biology, physics and chemistry on Bachelor level. Literature:
 - Nelson/Cox: Lehninger Principles of Biochemistry, Worth Publishers
| Practical use of the module | Compulsory module of the master’s program Nanobiophysics, track Molecular Biophysics. |
| Requirements for the award of credits | The credit-points can be acquired, if the module examination is successfully passed. The module examination consists of:
 - a presentation and
 - a written examination (90 minutes). |
| Credits and grades | For this module 4 credit-points can be awarded. The module grade is the weighted average of:
 - ¼ presentation
 - ¾ written examination |
<p>| Frequency of the course | The module is offered every academic year in winter semester. |
| Workload | The workload is 120 working hours |
| Duration of the module | 1 semester |</p>
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Resp. Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-NB 1.3</td>
<td>Introduction to Biochemistry and Molecular Cell Biology</td>
<td>Bernard Hoflack</td>
</tr>
</tbody>
</table>

Contents and qualification aims

Students know the fundamentals of biochemistry, organic chemistry, biomolecules and their structure, biosynthesis, gene expression and cellular organization, enzymology, network of primary metabolic pathways, mutagenesis, genetic architecture of selected biosyntheses.

Students have an overview of basic concepts in molecular and cell biology, principles of cellular organization (compartmentalization), relevance and organization of protein networks for the generation of cellular structure and function. They are familiar with the coordination of cell-cell-communication, regulation of growth, differentiation and tissue-development. They know the most important biochemical, biomolecular and technical methods of cell biology.

The students know the most important basics of biochemistry and molecular cell biology and are able to perform essential biochemical and cell and biomolecular lab activities themselves.

Type of course

4 SWS lecture, 1 SWS exercise, 1 SWS tutorial, 2 SWS lab practical

Requirements for study

Basic knowledge in physics, biology and chemistry on Bachelor level. Literature:
- Molecular biology of the Cell (Bruce Alberts), Kapitel 1 und 2
- Molecular Cell Biology (Darnell), Kapitel 1

Practical use of the module

Compulsory module of the master’s program Nanobiophysics, track Molecular Biophysics. It provides the basics for the specialisation module.

Requirements for the award of credits

The credits are awarded if the module examination is passed. The module examination consists of
- two oral examinations (individual exam, 20 minutes each) and
- a lab protocol

Credits and grades

For the module 10 credit points can be acquired. The module grade is the weighted average of:
- oral examinations, each 40%
- lab protocol 20%

Frequency of the course

The module is offered every academic year, starting in winter semester.

Workload

The workload is 300 working hours

Duration of the module

2 semester
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Resp. Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-NB 1.4</td>
<td>Elements of Nanobiotechnology</td>
<td>Gianaurelio Cuniberti</td>
</tr>
</tbody>
</table>

Contents and qualification aims

Students know the bottom-up generation of synthetic nanostructures with the help of proteins and DNA as well as structural, mechanical and electronic characteristics of DNA and proteins, DNA as construction material and the controlled generation of hybrid nanostructures using biomolecular templatings. They are familiar with biomimetic cluster synthesis, nano crystals for biological detection, new principles of (bio)molecular electronics, manipulation of nanoparticles in 3 dimensions and latest research questions and problems in the context of nanotechnology and bionanotechnology.

Students are in command of basic knowledge of bionanotechnology. They are able to comprehend the relevance of complex natural nanostructures for technical applications. In turn, they gain an understanding of how nanotechnological methods may be used in biology. Thanks to individually prepared papers and the subsequent discussions, students are able to communicate in a scientific manner.

Type of course

| Type of course | 2 SWS lecture, 2 SWS seminar, 1 SWS lab practical |

Requirements for study

Basic knowledge in physics on Bachelor level, basic knowledge in biology and chemistry on Abitur level.

Literature:
- G.L. Hornyak et al.: Introduction to nanoscience and nanotechnology, CRC Press 2009

Practical use of the module

Compulsory module of the master’s program Nanobiophysics, track Molecular Biophysics. It provides the basics for the module Applied Nanotechnology.

Requirements for the award of credits

The credits are awarded if the module examination is passed. The module examination consists of:
- an oral examination (individual exam, duration 20 minutes)
- an presentation and
- a lab protocol

Passing the module requires that the oral exam is evaluated with min. “sufficient” (4.0) or better.

Credits and grades

For the module 6 credit points can be acquired. The module grade is composed of the weighted average of:
- 50% oral exam
- 35 % presentation
- 15% lab protocol

Frequency of the course

The module is offered every academic year in winter semester.

Workload

The workload is 180 working hours.

Duration of the module

1 semester
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Resp. Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-NB 1.5</td>
<td>Concepts of Molecular Modelling</td>
<td>Gianaurelio Cuniberti</td>
</tr>
</tbody>
</table>

Contents and qualification aims
The students know basics of molecular dynamics simulation for the theoretical description of elements of bio- and nanophysics. They gain an overview of classic mechanics with the help of numerical methods and the modelling of interatomic forces (classically and quantum-mechanically).

The students know mathematical approaches to characterise the dynamics of molecules quantitatively and are able to model them in computer programs.

Type of course
2 SWS lecture, 2 SWS exercise, 2 SWS lab practical

Requirements for study
Basic knowledge in mathematics and physics on Bachelor level.

Literature:

Practical use of the module
Compulsory module of the master’s program Nanobiophysics, track Molecular Biophysics. It provides the basics for the module Nanostructured Materials.

Requirements for the award of credits
The credits are awarded if the module examination is passed. The module examination consists of:
- a modelling project and
- in the case of up to 10 students registered an oral examination (individual exam, duration 20 minutes) or in the case of more than 10 students registered a written examination (duration 90 minutes). The type of examination is announced at the end of the examination’s registration period as is customary at the Biotechnology Center.

Passing the module requires that the oral or written exam is evaluated with min. “sufficient” (4.0) or better.

Credits and grades
For the module 6 credit points can be acquired. The module grade is the unweighted average of the 2 grades.

Frequency of the course
The module is offered every academic year in winter semester.

Workload
The workload is 180 working hours

Duration of the module
1 semester
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Resp. Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-NB 2.1</td>
<td>Applied Nanotechnology</td>
<td>Bernd Büchner</td>
</tr>
</tbody>
</table>

Contents and qualification aims

Students know molecular pathways of different proteins and their assemblies functioning in the context of the biological organism and the possibility of transferring these mechanisms and functions to nanotechnological questions. They know basics of the molecular structure and functional mechanisms of proteins and how to transform transient forms of biochemical energy into storable forms. They know protein-induced diseases caused by failure of proteins in the functional chain, and strategies to correct these dysfunctions. The students are familiar with the requirements for the in vitro application of proteins for purposes in nanotechnology. Furthermore, they are introduced to the fabrication and the basic structural, electronic and magnetic characteristics and peculiarities of various nanostructures as for example cluster, semi-conductor nanostructures, molecules and nanotubes.

The students acquire an overview over the functioning mode of natural and synthetic nanostructures and –machines. They are able to inter-relate the knowledge of nanotechnology, molecular cell biology and biochemistry to apply them in continuative surveys and research projects in the context of nanobiophysics.

Type of course
4 SWS lecture, 2 SWS seminar

Requirements for study
Basic knowledge in polymer science, biochemistry, molecular and cell biology and bionanotechnology on Bachelor level, competences and skills of the module Elements of Nanobiotechnology

Literature:
- Molecular Biology of the Cell, Alberts et al, Taylor & Francis Ltd, 5th revised edition
- Cell Biology, Pollard & Earnshaw, Saunders W.B., 2nd edition
- Nanophysics and Nanotechnology , E. L. Wolf, 2006, WILEY-VCH
- Nanotechnology, M. Köhler, W. Fritzsche, 2007, WILEY-VCH
<table>
<thead>
<tr>
<th>Practical use of the module</th>
<th>Compulsory module of the master’s program Nanobiophysics, track Molecular Biophysics. It provides the basics for the module Specialisation Module.</th>
</tr>
</thead>
</table>
| Requirements for the award of credits | The credits are awarded if the module examination is passed. The module examination consists of
 - a presentation
 - and an oral examination (individual exam, duration 20 minutes) |
<p>| Credits and grades | For the module 7 credit points can be acquired. The module grade is the unweighted average of the 2 grades. |
| Frequency of the course | The module is offered every academic year in summer semester. |
| Workload | The workload is 210 working hours |
| Duration of the module | 1 semester |</p>
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Resp. Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-NB 2.2</td>
<td>Nanostructured Materials</td>
<td>Gianaurelio Cuniberti</td>
</tr>
</tbody>
</table>

Contents and qualification aims

The students know the fundamentals of physics with respect to the fabrication and the characteristics of nanostructured materials, particularly the synthesis of clusters and nanotubes, nanostructuring with the help of electron beam lithography, optical lithography and scanning microscopy.

Furthermore, they know the theoretical fundamentals of scanning force microscopy, chemical scanning force microscopy and optical near field microscopy. They are familiar with relevant quantum effects in mesoscopic systems, concepts of scaling laws, density of states and giant magneto-resistance. They know about electron transport in low dimensional solid-state materials and single electronics.

Type of course

2 SWS lecture, 2 SWS exercise, 2 SWS lab practical

Requirements for study

Basic knowledge in mathematics, and theoretical physics on Bachelor level, competences and skills of the module Concepts of Molecular Modelling.

Literature:

- R. Waser: Nanoelectronics and information technology, Wiley-VCH 2005
- V.V. Mitin, V.A. Kochelap, M. A. Stroscio: Introduction to nanoelectronics, Cambridge 2008
- D.A. Bonnell: Scanning tunneling microscopy and spectroscopy, VCH Weinheim 1993
- W.R. Fahrner (Ed.): Nanotechnology and nanoelectronics, Springer 2005

Practical use of the module

Compulsory module of the master’s program Nanobiophysics, track Molecular Biophysics. It provides the basics for the module Specialisation Module.

Requirements for the award of credits

The credits are awarded if the module examination is passed. The module examination consists of:

- a modelling project and
- in the case of up to 10 students registered an oral examination (individual exam, duration 20 minutes) or in the case of more than 10 students registered a written examination (duration 90 minutes). The type of examination is announced at the end of the examination’s registration period as is customary at the Biotechnology Center.

Passing the module requires that the oral or written exam is evaluated with min. “sufficient” (4.0) or better.

Credits and grades

For the module 6 credit points can be acquired. The module grade is the unweighted average of the 2 grades.

Frequency of the course

The module is offered every academic year in summer semester.

Workload

The workload is 180 working hours

Duration of the module

1 semester
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Resp. Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-NB 2.3</td>
<td>Advanced Biophysics</td>
<td>Stephan Grill</td>
</tr>
</tbody>
</table>

Contents and qualification aims

Students know the statistical physics of bio-molecules and membranes as well as stochastic processes and fluctuations. They are familiar with active transport processes and molecular motors, the physics of the cytoskeleton, collective behaviour, cellular oscillations and biological self-organization. Students have basic knowledge of theoretical biophysics allowing them to systematically and quantitatively address selected biophysical problems.

Students gain a historical view on the development and the motivation behind single molecule detection: single molecule spectroscopy in solid host-guest-systems, spectral jumps, spectral hole burning, low temperature experiments, static and dynamic heterogeneity, ergodic theory, analysis of distributions rather than mean values, access to intermediate or transient states. They have extended knowledge on applications of single molecule methods such as fluorescence spectroscopy and microscopy, force spectroscopy, scanning probe microscopy for the detection, analysis and manipulation of single molecules e.g. protein folding, conformational fluctuations, enzyme kinetics, markovian and non-markovian behavior.

They know common principles of Scanning Probe Microscopy (SPM) based on short range forces and principle experimental setups. They are familiar with concepts and function modes of scanning near-field microscopy (SNOM), electrochemical scanning tunneling microscopy (ESTM), scanning tunneling microscopy (STM), atomic force microscopy (AFM) and magnetic force microscopy (MFM).

Furthermore, the students know the most important optical techniques for single molecule imaging and tracking by microscopy and spectroscopy: confocal setup, fluorescence correlation spectroscopy (FCS), coincidence analysis, multi-parameter burst-analysis, lifetime measurements, anisotropy measurements, fluorescence resonance energy transfer (FRET): Far-field and TIRF microscopy. Single particle tracking in 2D on membrane systems, analysis of motor proteins in surface mobility assays, optical and magnetic tweezers.

Students know theoretical and practical aspects of single molecule analysis and manipulation, and know the challenges of their applications to biological systems. They are able to choose the right method or combinations of methods for a certain problem, and know the experimental conditions under which they can be applied.
<table>
<thead>
<tr>
<th>Type of course</th>
<th>4 SWS lecture, 2 SWS exercise, 2 SWS seminar, 2 lab practicals (1 week each)</th>
</tr>
</thead>
</table>
| **Requirements for study** | Basic knowledge in statistical physics on Bachelor level, basic knowledge in polymer science, biochemistry and molecular cell biology on Abitur level.
Literature:
 • Courant & Hilbert: Methods of Mathematical Physics
 • Jackson: Classical Electrodynamics
 • Sakurai: Advanced Quantum Mechanics
 • Huang: Introduction to Statistical Physics
 • Alberts et al, Molecular Biology of the Cell, Taylor & Francis Ltd, 5th revised edition
 • Pollard & Earnshaw, Cell Biology, Saunders W.B., 2nd edition |
| **Practical use of the module** | Compulsory module of the master’s program Nanobiophysics, track Molecular Biophysics. |
| **Requirements for the award of credits** | The credits are awarded if the module examination is passed. The module examination consists of
 • two oral examinations (individual exam, 20 minutes each) and
 • 2 lab protocols |
| **Credits and grades** | For the module 12 credit points can be acquired. The module grade is the weighted average of:
 • oral examinations 40% each
 • lab protocols 10% each |
<p>| Frequency of the course | The module is offered every academic year, starting in summer semester. |
| Workload | The workload is 360 working hours |
| Duration of the module | 2 semesters |</p>
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Resp. Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-NB 2.4</td>
<td>Microsystems and Bioinspired Structures</td>
<td>Hans-Georg Braun</td>
</tr>
</tbody>
</table>

Contents and qualification aims

The students know the physical and chemical basics for the production of microsystems by lithographic (electron beam/optical) and soft lithographic methods. They are familiar with the microstructuring of surfaces and the resulting changes in the physical properties (wetting/dewetting). They get to know the physical characteristics of liquid phases in contact with chemically/topographically heterogeneous surfaces and in microsystems as well as technical applications in microfluidic systems. They are familiar with basic concepts of biologically inspired nanotechnology. By means of selected examples they are introduced to the physical basics of the functioning and technological applications in the production of ultra-adhesive or ultra-hydrphobic structure elements that follow biological models. They are familiar with principles of self-organisation of meso- and microscopic objects, particularly capillary phenomena.

Type of course

2 SWS lecture, 2 SWS lab practical

Requirements For study

Basic knowledge in physics (Optics, surface physics) and in physical chemistry on Bachelor-level

Literature:
- T. Engel, P. Reid Physical Chemistry, Pearson

Practical use of the module

Compulsory module of the master’s program Nanobiophysics, track Molecular Biophysics.

Requirements for the award of credits

The credits are awarded if the module examination is passed. The module examination consists of
- an oral examination (individual exam, duration 20 minutes) and
- a lab protocol

Credits and grades

For this module, 5 credit points can be acquired. The module grade is the weighted average of:
- oral examination 85%
- lab protocol 15%

Frequency of the course

The module is offered every academic year in summer semester.

Workload

The workload is 150 working hours.

Duration of the module

1 semester
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Resp. Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-NB 3.1</td>
<td>Lab Rotation Biophysics</td>
<td>Jochen Guck</td>
</tr>
</tbody>
</table>

Contents and qualification aims
In this module, students work on a short scientific project from the field of experimental biophysics in an in-depth lab practical. The students gain practical experience with topical scientific methods in biophysical research teams and will be enabled to apply relevant technologies and laboratory routines.

Type of course
2 weeks block lab practical

Requirements for study
Basic knowledge in mathematics (esp. Calculus), simple differential calculus equations, basic knowledge in classical physics (mechanics, electrodynamics, thermodynamics) on Bachelor level.

Literature:
- Courant & Hilbert: Methods of Mathematical Physics
- Jackson: Classical Electrodynamics
- Sakurai: Advanced Quantum Mechanics
- Huang: Introduction to Statistical Physics

Practical use of the module
Compulsory module of the master’s program Nanobiophysics, track Molecular Biophysics, as well as track Nanoscience and Nanotechnology/specialisation Biophysics.

Requirements for the award of credits
The credits are awarded if the module examination is passed. The module examination is a lab protocol.

Credits and grades
For the module 6 credit points can be acquired. The module grade is the grade of the lab protocol.

Frequency of the course
The module is offered every academic year in winter semester.

Workload
The workload is 180 working hours

Duration of the module
1 semester
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Resp. Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-NB 3.2</td>
<td>Lab Rotation Nanophysics</td>
<td>Gianaurelio Cuniberti</td>
</tr>
</tbody>
</table>

Contents and qualification aims

In this module, students work on a short scientific project from the field of nanotechnology or nanophysics in an in-depth lab practical. The students gain practical experience with topical scientific methods in nanoscientific research teams and will be enabled to apply relevant technologies and laboratory routines.

Type of course

2 weeks block lab practical

Requirements for study

Knowledge of polymer science, biochemistry, molecular cell biology and bionanotechnology, basics of mathematics and theoretical physics on Bachelor level, programming skills on Abitur level.

- G.L. Hornyak et al.: Introduction to nanoscience and nanotechnology, CRC Press 2009
- Alberts et al, Molecular Biology of the Cell, Taylor & Francis Ltd, 5th revised edition

Practical use of the module

Compulsory module of the master’s program Nanobiophysics, track Molecular Biophysics.

Requirements for the award of credits

The credits are awarded if the module examination is passed. The module examination is a lab protocol.

Credits and grades

For the module 6 credit points can be acquired. The module grade is the grade for the lab protocol.

Frequency of the course

The module is offered every academic year in winter semester.

Workload

The workload is 180 working hours

Duration of the module

1 semester
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Resp. Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-NB 3.3</td>
<td>Lab Rotation Choice</td>
<td>Jochen Guck</td>
</tr>
</tbody>
</table>

Contents and qualification aims
In this module, students work on a short scientific project from any of the offered fields, e.g. biology, chemistry, or theoretical biophysics in an in-depth lab practical. The students gain practical experience with topical scientific methods in research teams and will be enabled to apply relevant technologies and laboratory routines.

Type of course
2 weeks block lab practical

Requirements for study
Knowledge of polymer science, biochemistry, molecular cell biology and bionanotechnology, basics of mathematics and theoretical physics on Bachelor level, programming skills on Abitur level.

Literature:
- G.L. Hornyak et al.: Introduction to nanoscience and nanotechnology, CRC Press 2009
- Alberts et al, Molecular Biology of the Cell, Taylor & Francis Ltd, 5th revised edition

Practical use of the module
Compulsory module of the master’s program Nanobiophysics, track Molecular Biophysics.

Requirements for the award of credits
The credits are awarded if the module examination is passed. The module examination is a lab protocol (max. 4 pages).

Credits and grades
For the module 6 credit points can be acquired. The module grade is the grade for the lab protocol.

Frequency of the course
The module is offered every academic year in winter semester.

Workload
The workload is 180 working hours

Duration of the module
1 semester
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Resp. Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-NB E</td>
<td>Specialisation Module</td>
<td>Jochen Guck</td>
</tr>
</tbody>
</table>

Contents and qualification aims
The students know selected current nano- and biophysical research issues. By choosing their courses for this module, they create their own specific profile within the master’s program. The selection of courses may vary according to topical academic questions and recent developments in the diverse subjects.

The students gain an in-depth knowledge of the selected research fields. They are able to orientate themselves within different areas of research and know about the latest developments in the optional required subjects.

Type of course
4 SWS lecture. The subjects incl. scope need to be chosen from the list of electives/catalogue for the master’s program Nanobiophysics/Molecular Biophysics. This list/catalogue is published at the start of the semester as is customary at the Biotechnology Center and includes the type of examinations.

Requirements for study
Competences and skills of the modules Introduction to Biochemistry and Molecular Cell Biology, Applied Nanotechnology and Nanostructures Materials.

Practical use of the module
Compulsory module of the master’s program Nanobiophysics, track Molecular Biophysics.

Requirements for the award of credits
The credits are awarded if the module examination is passed. The module examination consists of examinations as specified in the list/catalogue of electives Nanobiophysics/Molecular Biophysics.

Credits and grades
For the module 6 credit points can be acquired. The module grade is the unweighted average grade of the grades.

Frequency of the course
The module is offered every academic year in winter semester.

Workload
The workload is 180 working hours

Duration of the module
1 semester
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Resp. Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-NB E1</td>
<td>Molecular Biophysics</td>
<td>Jochen Guck</td>
</tr>
</tbody>
</table>

Contents and qualification aims

The students are familiar with concepts of phenomenological thermodynamics: energy, entropy, transport phenomena, biologically active forces, classical reaction and enzyme kinetics, bioenergetics as well as membrane biophysics and basics of electrophysiology.

They know the most important methods with respect to molecular, cellular and systems biophysics as well as structural methods (NMR, X-Ray), spectroscopy and microscopy, modern methods in biochemistry and proteomics.

Students will have an overview over the most important concepts and the broad methodology of modern applied biophysics. They are able to select the best method(s) for a certain practical task and have background knowledge about their prerequisites and which systems to best apply them to.

The students are familiar with functional biomolecular units as machines with the specific aim to use them in more complex technological or medical processes as nanoscale functional elements. The students have an overview of potential applications of the proteins of fibrillar structures, applications of motor proteins, applications of motor proteins of the cytoskeleton, enzymes: classification, kinetics, control and use, applications of viruses, prediction, design and engineering of cellular machines. They know how to write a grant proposal.

The students have an interdisciplinary research and development competence, which qualifies them both for scientific intentions (master thesis or rather subsequent doctorate) as well as for an activity in the R&D field of a biotechnology company.

Type of course

4 SWS lecture, 2 SWS seminar, 2 SWS exercise and 2 SWS lab practical

Requirements for study

Basic knowledge in mathematics, particularly differential and integral calculus, simple differential equations on Bachelor level. Basic knowledge in classic physics (mechanics, electrodynamics, thermodynamics) on Bachelor level, basics in biology on Bachelor level.

Literature:
- Courant & Hilbert: Methods of Mathematical Physics
- Jackson: Classical Electrodynamics
- Sakurai: Advanced Quantum Mechanics
- Huang: Introduction to Statistical Physics
<table>
<thead>
<tr>
<th>Practical use of the module</th>
<th>Compulsory module of the master’s program Nanobiophysics, track Nanoscience and Nanotechnology, specialization Biophysics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements for the award of credits</td>
<td>The credits are awarded if the module examination is passed. The module examination is a written examination (duration 90 minutes).</td>
</tr>
<tr>
<td>Credits and grades</td>
<td>For the module 9 credit points can be acquired. The module grade is the grade of the written examination.</td>
</tr>
<tr>
<td>Frequency of the course</td>
<td>The module is offered every academic year in winter semester.</td>
</tr>
<tr>
<td>Workload</td>
<td>The workload is 270 working hours</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module Number</td>
<td>Module Name</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>BT-NB E2</td>
<td>Biological Oriented Module</td>
</tr>
</tbody>
</table>

Contents and qualification aims

The students know research issues and recent developments in selected research areas of molecular and cell biology, developmental or systems biology and surface chemistry. By choosing a number of elective, the students create an individual profile within the master’s program.

They are able to orientate themselves within different areas of research and know about the latest developments in the selected subjects.

Type of course

4 SWS lecture

Requirements for study

Basic knowledge in Biology, Physics and Chemistry on Bachelor-level.

Literature:
- Molecular biology of the Cell (Bruce Alberts), Kapitel 1 und 2
- Molecular Cell Biology (Darnell), Kapitel 1

Practical use of the module

Compulsory module of the master’s program Nanobiophysics, track Nanoscience and Nanotechnology

Requirements for the award of credits

The credits are awarded if the module examination is passed. The module examination consists of 2 oral exams (individual exam, duration 20 min each)

Credits and grades

For the module 6 credit points can be acquired. The module grade is the unweighted average grade of the 2 grades.

Frequency of the course

The module is offered every academic year in winter semester.

Workload

The workload is 180 working hours

Duration of the module

1 semester
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Resp. Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-NB E3</td>
<td>Nanooptics and Magnetism on the Nanoscale</td>
<td>Lukas Eng</td>
</tr>
</tbody>
</table>

Contents and qualification aims

The students are familiar with: field of a hertz-dipole, evanescent field, far field, field distribution in focus of linear, circular, radial and azimuthal polarisation, diffraction, principles and applications of the near-field scanning optical microscopy, optical micro-cavity, impact of an optical field in a closed space on the fluorescence properties of a molecule, generation of optical near field on interfaces and through nanostructures: optical aperture, metallic nanoparticles, surface plasmon, optical antennae. The module introduces modern optics on the basis of single molecule detection.

Furthermore, the students know fundamental aspects of magnetism, magnetic resonance, thermodynamics, magnetization, magnetic exchange, anisotropy on the molecular scale, molecular and nanoscale magnets in memory technology and medicine. They know modern aspects of magnetism of molecules and on the nanometer scale.

Type of course

4 SWS lecture

Requirements for study

Knowledge of theoretical and experimental biophysics on Bachelor level.

Literature:
- Courant & Hilbert: Methods of Mathematical Physics
- Jackson: Classical Electrodynamics
- Sakurai: Advanced Quantum Mechanics
- Huang: Introduction to Statistical Physics

Practical use of the module

Compulsory optional module of the master’s program Nanobiophysics, track Nanoscience and Nanotechnology, specialisation Nanoelectronics

Requirements for the award of credits

The credits are awarded if the module examination is passed. The module examination consists of an oral exam (individual exam, duration 20 min).

Credits and grades

For the module 6 credit points can be acquired. The module grade is the grade for the oral exam.

Frequency of the course

The module is offered every academic year in winter semester.

Workload

The workload is 180 working hours

Duration of the module

1 semester
Contents and qualification aims

The students know the fundamentals of molecular electronics, particularly experimental methods, physical effects and theoretical instruments. They are familiar with single molecule electronics, scanning probes and break junction techniques, transport mechanisms on the nanoscale, molecular components (diodes, transistors, sensors) and molecular structures. The students know the most important experimental and theoretical methods for the analysis of charge transfer on the molecular scale.

Type of course

2 SWS lecture, 2 SWS exercise, 2 SWS seminar

Requirements for study

Basics of mathematics and physics on Bachelor level.
Literature:
- M.C. Petty: Molecular electronics, Wiley 2007, Kapitel 1 und 2
- J.C. Cuevas, E. Scheer: Molecular electronics, World Scientific 2010, Kapitel 1

Practical use of the module

Compulsory optional module of the master’s program Nanobiophysics, track Nanoscience and Nanotechnology, specialisation Nanoelectronics

Requirements for the award of credits

The credits are awarded if the module examination is passed. The module examination consists of
- an oral exam (individual exam, duration 20 min) and
- a presentation

Credits and grades

For the module 9 credit points can be acquired. The module grade is the weighted average of:
- oral exam 70%
- oral presentation 30%

Frequency of the course

The module is offered every academic year in winter semester.

Workload

The workload is 270 working hours

Duration of the module

1 semester
<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Resp. Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-NB E5</td>
<td>Broadening Module</td>
<td>Jochen Guck</td>
</tr>
</tbody>
</table>

Contents and qualification aims
The students know selected current nano- and biophysical research issues. Based on their choice of courses, the students gain an in-depth knowledge of the selected research fields. They will be able to orientate themselves within different areas of research and know about the latest developments in the chosen subjects.

Type of course
6 SWS lecture. The subjects incl. scope need to be chosen from the list of electives/catalogue for the master’s program Nanobiophysics/Nanoscience and Nanotechnology. This list/catalogue is published at the start of the semester as is customary at the Biotechnology Center and includes the type of examinations.

Requirements for study
Basic knowledge in Biology, Physics and Chemistry on Bachelor-level. Literature:
- Nelson/Cox: Lehninger Principles of Biochemistry, Worth Publishers

Practical use of the module
Compulsory optional module of the master’s program Nanobiophysics, track Nanoscience and Nanotechnology

Requirements for the award of credits
The credits are awarded if the module examination is passed. The module examination consists of examinations as specified in the list/catalogue of electives Nanobiophysics/Nanoscience and Nanotechnology.

Credits and grades
For the module 9 credit points can be acquired. The module grade is the unweighted average grade of the grades obtained.

Frequency of the course
The module is offered every academic year in winter semester.

Workload
The workload is 270 working hours

Duration of the module
1 semester
Annex 2 – Study schedule of the master program Nanobiophysics

defining type and scope of the courses (in SWS) as well as number of exam requirements whose type, scope and organisation are specified in the module descriptions.

Track Molecular Biophysics

<table>
<thead>
<tr>
<th>Number of Module</th>
<th>Title of Module</th>
<th>1. Semester</th>
<th>2. Semester</th>
<th>3. Semester</th>
<th>4. Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L/E/S/P/T L/E/S/P/T L/E/S/P/T L/E/S/P/T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT-NB 1.1</td>
<td>Fundamentals of Biophysics</td>
<td>4/0/2/1/0</td>
<td>3xPL</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>BT-NB 1.2</td>
<td>Structural and Computational Biology</td>
<td>2/0/2/0/0</td>
<td>2xPL</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>BT-NB 1.3</td>
<td>Introduction to Biochemistry and Molecular Cell Biology</td>
<td>2/0/0/2/0</td>
<td>2xPL</td>
<td>2/1/0/0/1</td>
<td>1xPL</td>
<td>10</td>
</tr>
<tr>
<td>BT-NB 1.4</td>
<td>Elements of Nanobiotechnology</td>
<td>2/0/2/1/0</td>
<td>3xPL</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BT-NB 1.5</td>
<td>Concepts of Molecular Modelling</td>
<td>2/2/0/2/0</td>
<td>2xPL</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BT-NB 2.1</td>
<td>Applied Nanotechnology</td>
<td>4/0/2/0/0</td>
<td>2xPL</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>BT-NB 2.2</td>
<td>Nanostructured Materials</td>
<td>2/2/0/2/0</td>
<td>2xPL</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BT-NB 2.3</td>
<td>Advanced Biophysics</td>
<td>2/2/0/0/0</td>
<td>1xPL</td>
<td>2/0/2/0/0</td>
<td>3xPL</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 Wochen P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT-NB 2.4</td>
<td>Microsystems and Bioinspired Structures</td>
<td>2/0/0/2/0</td>
<td>2xPL</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>BT-NB 3.1</td>
<td>Lab Rotation Biophysics</td>
<td>2/0/0/2/0</td>
<td>1xPL</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BT-NB 3.2</td>
<td>Lab Rotation Nanophysics</td>
<td>2/0/0/2/0</td>
<td>1xPL</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BT-NB 3.3</td>
<td>Lab Rotation Choice</td>
<td>2/0/0/2/0</td>
<td>1xPL</td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Master thesis defense

SWS: Semesterwochenstunden (hours per week, 1SWS=45 min per week over the whole semester), PL: Prüfungsleistung (examination)
L: Lecture, E: Exercise, S: Seminar, P: Practical, T: Tutorial
Track Nanoscience and Nanotechnology

<table>
<thead>
<tr>
<th>Number of Module</th>
<th>Title of Module</th>
<th>1. Semester*</th>
<th>2. Semester*</th>
<th>3. Semester</th>
<th>4. Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L/E/S/P/T</td>
<td>L/E/S/P/T</td>
<td>L/E/S/P/T</td>
<td>L/E/S/P/T</td>
<td></td>
</tr>
<tr>
<td>BT-NB E2</td>
<td>Biological Oriented Module</td>
<td>4/0/0/0</td>
<td>2xPL</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BT-NB E5</td>
<td>Broadening Module</td>
<td>6/0/0/0</td>
<td>PL***</td>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Spezialisierung Biophysics

<table>
<thead>
<tr>
<th>Number of Module</th>
<th>Title of Module</th>
<th>1. Semester*</th>
<th>2. Semester*</th>
<th>3. Semester</th>
<th>4. Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L/E/S/P/T</td>
<td>L/E/S/P/T</td>
<td>L/E/S/P/T</td>
<td>L/E/S/P/T</td>
<td></td>
</tr>
<tr>
<td>BT-NB 3.1</td>
<td>Lab Rotation Biophysics</td>
<td>2 Wochen</td>
<td>1xPL</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BT-NB E1</td>
<td>Molecular Biophysics</td>
<td>4/2/2/2</td>
<td>1xPL</td>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Spezialisierung Nanoelectronics

<table>
<thead>
<tr>
<th>Number of Module</th>
<th>Title of Module</th>
<th>1. Semester*</th>
<th>2. Semester*</th>
<th>3. Semester</th>
<th>4. Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L/E/S/P/T</td>
<td>L/E/S/P/T</td>
<td>L/E/S/P/T</td>
<td>L/E/S/P/T</td>
<td></td>
</tr>
<tr>
<td>BT-NB E3</td>
<td>Nanooptics and Magnetism on the Nanoscale</td>
<td>4/0/0/0</td>
<td>1xPL</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BT-NB E4</td>
<td>Molecular Electronics</td>
<td>2/2/2/0</td>
<td>2xPL</td>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Master thesis

- defense 1

Total credits 30 30 30 30 120

* 1st year at KU Leuven
** students choose 1 out of the 2 specialisation options
*** according to the catalogue
SWS: Semesterwochenstunden (hours per week, 1SWS=45 min per week over the whole semester), PL: Prüfungsleistung (examination)
L: Lecture, E: Exercise, S: Seminar, P: Practical, T: Tutorial