Examplepictures of DNA-Structures


Mechanisms of whole-body regeneration, and their evolution

CMCB Life Sciences Seminar

Date:17.10.2019, 16:00 - 17:00
Speaker: Prof. Dr. Mansi Srivastava, Harvard University, Department of Organismic and Evolutionary Biology
Location: CRTD, ground floor, auditorium left
Host: Dr. Anna Czarkwiani (CRTD)

Wound repair and regeneration are fundamental features of animal biology, and the capacity to replace all missing tissues (“whole-body regeneration”) is widely distributed across animal phyla. The genetic pathways that mediate whole-body regeneration are poorly understood, and little is known about how these pathways compare across animal lineages. Functional studies of species in phylogenetically informative positions are needed both to elucidate further the mechanisms of regeneration and to evaluate how these mechanisms have evolved. The goals of my research program are: 1) to identify cellular and genetic mechanisms for whole-body regeneration, and 2) to understand how regeneration has evolved by comparing mechanisms across distantly-related animals. We focus our work on a new model system, the acoel worm, Hofstenia miamia, which regenerates robustly and represents the sister-lineage to all other animals with bilateral symmetry, to address these questions. In this talk, I will discuss how we utilize a diversity of approaches including functional genomics, single-cell RNA-sequencing, and transgenesis to uncover the mechanisms of regeneration in Hofstenia.

1.    A.R. Gehrke, E. Neverett, Y-J. Luo, A. Brandt, L. Ricci, R.E. Hulett, A. Gompers, J.G. Ruby, D.S. Rokhsar, P.W.Reddien, and M. Srivastava. Acoel genome reveals the regulatory landscape of whole-body regeneration. Science,eaau6173:10.1126/science.aau6173, 2019.
2.    Srivastava, M., K. Mazza-Curll, J.C. van Wolfswinkel, and P.W. Reddien (2014). Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling. Curr. Biol. 24(10): 1107-13.
3.    Raz, A., M. Srivastava, R. Salvenmoser, and P. W. Reddien. Acoel regeneration mechanisms indicate an ancient role for muscle in regenerative patterning. 10.1038/s41467-017-01148-5. Nat. Comm., 2017
4.    Srivastava, M., O. Simakov, J. Chapman, B. Fahey, M.E. Gauthier, T. Mitros, G.S. Richards, C. Conaco, M. Dacre,U. Hellsten, C. Larroux, N.H. Putnam, M. Stanke, M. Adamska, A. Darling, S.M. Degnan, T.H. Oakley, D.C. Plachetzki, Y. Zhai, M. Adamski, A. Calcino, S.F. Cummins, D.M. Goodstein, C. Harris, D.J. Jackson, S.P. Leys, S. Shu, B.J.Woodcroft, M. Vervoort, K.S. Kosik, G. Manning, B.M. Degnan, and D.S. Rokhsar (2010). The Amphimedon queenslandica genome and the evolution of animal complexity. Nature, 466(7307): 720–726.
5.    Srivastava, M., E. Begovic, J. Chapman, N. H. Putnam, U. Hellsten, T. Kawashima, A. Kuo, T. Mitros, M.L. Carpenter, A.Y. Signorovitch, M.A. Moreno, K. Kamm, J. Grimwood, J. Schmutz, H. Shapiro, I. V. Grigoriev, L.W. Buss, B. Schierwater, S. Dellaporta, and D. Rokhsar (2008). The Trichoplax genome and the nature of placozoans. Nature, 454(7207): 955–960.

To the top of this page.