Examplepictures of DNA-Structures
Monday Tuesday Wednesday Thursday Friday Saturday Sunday
9
24
26
28
29
1
10
2
4
7
8
11
9
11
14
15
12
16
17
18
20
21
22
13
23
25
27
28
29
14
30
1
4
5

Page 1 of 2 12 >>

March 01 - March 31

11 entries found

Semiconduct..
Start date: March 03
05:00 pm 07:00 pm

Description: 

The lectures are broadcast live to all participating universities using a Virtual Classroom concept in the EMM Nano programme. Find more information here.

Curved memb..
Start date: March 05
01:00 pm 02:00 pm

Description: 

 

5 most important publications:

Gov, Nir S., and Ajay Gopinathan. "Dynamics of membranes driven by actin polymerization." Biophysical journal 90.2 (2006): 454-469.

Peleg, Barak, et al. "Propagating cell-membrane waves driven by curved activators of actin polymerization." PloS one 6.4 (2011).

Gov, N. S. "Guided by curvature: shaping cells by coupling curved membrane proteins and cytoskeletal forces." Philosophical Transactions of the Royal Society B: Biological Sciences 373.1747 (2018): 20170115.

Fošnarič, M., Penič, S., Iglič, A., Kralj-Iglič, V., Drab, M., & Gov, N. S. (2019). Theoretical study of vesicle shapes driven by coupling curved proteins and active cytoskeletal forces. Soft Matter, 15(26), 5319-5330.

Graziano, Brian R., et al. "Cell confinement reveals a branched-actin independent circuit for neutrophil polarity." PLoS biology 17.10 (2019).

Abstract:

Membrane proteins, either trans-membrane or adsorbed, can cause a local bending of the membrane, denoted as "spontaneous curvature". Such proteins, usually within a complex of proteins and lipids, curve the membrane due to its shape. However, when such a complex can recruit actin polymerization, there is an additional protrusive force pushing the membrane. The coupling between the local concentration of curved membrane complexes and the protrusive forces of the actin cytoskeleton gives rise to spontaneous shape transitions of the membrane. We present a theoretical study of this process, where for highly deformed shapes we use numerical simulations. The shapes we find shed light on common actin-driven membrane shapes observed in cells, such as the dorsal ruffles and the lamellipodia of motile cells.

Everybody is very welcome!

 

 

Stammzellen..
Start date: March 06
09:00 am 03:30 pm

Description: 

UniStem Day @CRTD, 6. März 2020

Vormittagsprogramm
9:00 Uhr Begrüßung und Einführung: Dr. Annette Garbe
9:15 Uhr Stammzellen-Quiz, Dr. Maren Henneken
9:30 Uhr Prof. Marius Ader: „Das Auge, Blindheit und Stammzellen“
10:00 Uhr Dr. Mareike Albert „Neurale Stammzellen – wie sich unser Gehirn entwickelt“
10:30 Uhr Dr. Holger Henneicke: „Aktivierung mesenchymaler Stammzellen im Menschen“
11:00 Uhr Dr. Prashanth Kandalla: “Cytokine treatment for infections occurring after stem cell transplantation“, Vortrag auf Englisch
11:30 Uhr Stammzellen-Quiz Reloaded, Dr. Maren Henneken

11:45 Uhr Mittagessen

Workshops am Nachmittag
13:00 - 15:00 Uhr „Stammzellen erleben" – Erlebt ein buntes Nachmittagsprogramm mit Vorträgen, Workshops, Diskussionen und eigenen Experimenten.

  • Mitmachen in der Stem Cell Engineering Facility mit Katrin Neumann und Vanessa Hänchen
    "Kultur von humanen Stammzellen"
    max. 8 Personen
  • Diskussionsrunde zur Ethik in der Stammzellenforschung mit Dr. Dominic Eberle
    ca. 15 Personen
  • Vorstellung der FACS Facility mit Anne Gompf und Katja Bernhard
    ca. 10 Personen
  • Einblicke in die Elektronenmikroskopie mit Thomas Kurth
    ca. 25 Personen

15:15 Austausch, Evaluation und Abschied

Wo: Fetscherstraße 105, 01307 Dresden
Wer: SchülerInnen der Biologie-Leistungskurse in der Sekundarstufe II
Wie: Anmeldung per Mail durch die LehrerInnen: annette.garbe(at)tu-dresden.de
Da das Platzangebot begrenzt ist, werden die Plätze in der Reihenfolge der Anmeldung vergeben (max. 60 TeilnehmerInnen).
Veranstalter: Zentrum für Regenerative Therapien TU Dresden

Das Programm im Überblick.

Nanotracers..
Start date: March 10
05:00 pm 07:00 pm

Description: 

The lectures are broadcast live to all participating universities using a Virtual Classroom concept in the EMM Nano programme. Find more information here.

Dissecting ..
Start date: March 12
01:00 pm 02:00 pm

Description: 

 

5 most important publications:

Boxer LD, Renthal W, Greben AW, Whitwam T, Silberfeld A, Stroud H, Li E, Yang MG, Kinde B, Griffith EC, Bonev B, Greenberg ME.  MeCP2 Represses the Rate of Transcriptional Initiation of Highly Methylated Long Genes. Mol Cell (2020) Jan 16;77(2):294-309.e9

Bonev B.#, Cohen N., Szabo Q., Fritsch L., Papadopoulos G., Lubling Y., Xu X., Lv X., Hugnot JP, Tanay A. & Cavalli G#. Multiscale3D genome rewiring during mouse neural development. Cell (2017)171, 557.e1–557.e24.

Bonev B.& Cavalli G. Organization and function of the 3D genome. Nature Reviews Genetics (2016)17,661–678

Bonev B.,Stanley P. & Papalopulu, N. microRNA-9 modulates Hes1 ultradian oscillations by forming a negative feedback loop. Cell Reports (2012)2(1): 10-18.

Bonev B., Pisco A. & Papalopulu, N. MicroRNA-9 Reveals Regional Diversity of Neural Progenitors along the Anterior-Posterior Axis.Developmental Cell (2011)20, 19-32

Abstract:

The Bonev Lab focuses on decoding the epigenetic mechanisms of gene regulation in the cortex and how they control temporal and spatial cellular identity in development and evolution. To accomplish this, we study the interplay between transcription factors, 3D nuclear organization and gene expression in vivo and using cerebral organoids. Our research is highly interdisciplinary and combines developmental neurobiology, single cell –omics, mouse genetics, CRISPR-based techniques and computational biology.

Everybody is very welcome!

Cell-specif..
Start date: March 13
11:00 am 12:00 pm

Description: 

 

Abstract

Transcription and metabolism both influence cell function yet it has rarely been defined how transcriptional control regulates dedicated metabolic pathways to govern cell fate. My manuscript shows that a metabolic program directly instructed by a lineage transcription factor is required for embryonic erythroid differentiation. Zebrafish moonshine (mon) mutant embryos defective for the conserved transcriptional intermediary factor 1 gamma (tif1γ) lack red blood cells (RBCs) due to a transcription elongation block. To uncover dysregulated pathways in mon mutants, I performed a chemical suppressor screen with 3,120 compounds. Among the hits, I identified several inhibitors of dihydroorotate dehydrogenase (DHODH), an essential enzyme for pyrimidine synthesis. Leflunomide as well as the structurally unrelated DHODH inhibitor brequinar rescue the formation of primitive erythroid cells in the mon mutant. DHODH needs to be inhibited in mon embryos during gastrulation to achieve its rescue – at around a time when the first blood progenitors are born. In agreement with this, I showed in blastula transplants that tif1γ, in addition to its cell-autonomous role, plays a role in the hematopoietic niche for RBC development. Importantly, Leflunomide’s ability to rescue blood formation in mon mutants depends on mitochondrial coenzyme Q (CoQ) activity to which DHODH is functionally linked across the mitochondrial membrane. In-vivo metabolomics analysis revealed that tif1γ loss results in mitochondrial respiration defects. Through genome-wide transcriptome and chromatin immunoprecipitation analyses, I found that genes encoding CoQ metabolic enzymes are direct TIF1γ targets. Strikingly, treatment with the CoQ analog decylubiquinone results in rescue of βe3 globin expression in mon embryos. My work highlights how a lineage transcription factor tunes energy metabolism to set the stage for erythroid cell fate, which could have parallels also in the emergence and differentiation of other tissue lineages.

Molecular, ..
Start date: March 19
01:00 pm 02:00 pm

Description: 

 

5 most important publications:


Hinz, B. and Lagares, D., (2020) Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nature Reviews Rheumatology 16(1):11-31

Pakshir, P., Alizadehgiashi, M., Wong, B., Coelho, N.M., Chen, X., Gong, Z., Shenoy, V.B., McCulloch, C., and Hinz, B. (2019): Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nature Communications 10: 1850

Li, C.X., Talele, N.P., Boo, S., Knee-Walden, E., Koehler, A., Kapus, A., Speight, P., Balestrini, J.L., Hinz, B. (2017). Micro RNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nature Materials 16(3):379-389

Klingberg, F., Chow, M. L., Koehler, A., Boo, S., Buscemi, L., Quinn, T. M., Costell, M., Alman, B. A., Genot, E., and Hinz, B. (2014). Prestress in the extracellular matrix sensitizes latent TGF-beta1 for activation. J Cell Biol 207, 283-297

Buscemi, L., Ramonet, D., Klingberg, F., Formey, A., Smith-Clerc, J., Meister, J.-J., and Hinz, B.: (2011) The single-molecule mechanics of the latent TGFβ1 complex. Current Biology 21, 2046–2054

Abstract:

To rapidly restore mechanical integrity of tissues after injury, a variety of different cell types are activated to become myofibroblasts. Hallmarks of the myofibroblast are secretion of extracellular matrix (ECM), development of adhesion structures with the ECM, and formation of contractile stress fiber bundles. When contracture and ECM remodeling become progressive and manifest as organ fibrosis, stiff scar tissue obstructs and ultimately destroys organ function. Pivotal for the formation and persistence of myofibroblasts are mechanical stimuli arising during tissue repair and chronic persistence of inflammatory cells. I will give an overview on our current projects that address how mechanical factors orchestrate the development of myofibroblasts by mediating direct and far/ranging communication between myofibroblasts and macrophages. By understanding and manipulating myofibroblast and macrophage mechanoperception we will be able to devise better therapies to reduce scarring and support normal wound healing.

Everybody is welcome!

In vitro bi..
Start date: March 24
05:00 pm 07:00 pm

Description: 



Werde Forsc..
Start date: March 26
09:00 am 02:00 pm

Description: 

Das Center for Molecular and Cellular Bioengineering (CMCB) konzentriert sich als Zentrale Wissenschaftliche Einrichtung der TU Dresden auf interdisziplinäre Forschung und Lehre im Bereich der Lebenswissenschaften. Es vereint unter seinem Dach die Institute B CUBE, BIOTEC und CRTD und ist sowohl mit den Fakultäten der TU Dresden als auch mit externen Forschungsinstituten eng vernetzt. Wir laden euch am Girls‘ Day ein, die Arbeit an unseren Forschungsinstituten kennen zu lernen und wollen euch einen Einblick in den Laboralltag der Wissenschaftlerinnen geben, indem ihr im Labor zusammen Experimente durchführt. Außerdem stellen wir euch verschiedene Berufsfelder vor, in denen ‚frau‘ in den Naturwissenschaften arbeiten kann. Wir freuen uns auf euch!

Programm
09.00 – 09.15 Begrüßung und Kurzvorstellung CMCB, Vorstellung Ablauf
09.15 – 10:00 Führung durch die Axolotl-Facility: FSJ in der Wissenschaft
10:10 – 12:00 Die Fruchtfliege als Modellorganismus
12:10 – 12:30 Berufsbild Junior-Professorin
12:30 – 13:00 Das Zytoskelett
13.00 – 14.00  Gemeinsames Mittagessen in der Mensologie

Hier im Überblick

Anmeldung: www.girls-day.de

Adult hippo..
Start date: March 26
01:00 pm 02:00 pm

Description: 

 

5 most important publications:

Unraveling human adult hippocampal neurogenesis. Flor-García M; Terreros-Roncal J; Moreno-Jiménez E.P; Ávila J; Rábano A; Llorens-Martín M. Nature Protocols. 2020 Jan 8. doi:  10.1038/s41596-019-0267-y.

Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in Alzheimer´s disease patients. Moreno-Jiménez E.P; Flor-García M; Terreros-Roncal J; Rábano A, Cafini F, Pallas-Bazarra N, Ávila J, Llorens-Martín M. Nature Medicine. 2019 Apr; 25(4): 554-60. PMID: 30911133.

Activity-dependent reconnection of adult-born dentate granule cells in a mouse model of frontotemporal dementia. Terreros-Roncal J; Flor-García M*; Moreno-Jiménez EP*; Pallas-Bazarra N*; Rábano A; Sah N; van Praag H; Giacomini D; Schinder AF; Ávila J; Llorens-Martín M. The Journal of Neuroscience. 2019 Jul 17; 39(29):  5794-5815. PMID: 31133559.

Novel function of Tau in regulating the effects of external stimuli on adult hippocampal neurogenesis. Pallas-Bazarra N, Jurado-Arjona J, Navarrete M, Esteban JA, Hernández F, Ávila J, Llorens-Martín M. The EMBO Journal. 2016 Jul 1; 35 (13): 1417-36. PMID: 27198172.

GSK-3β overexpression causes reversible alterations on postsynaptic densities and dendritic morphology of hippocampal granule neurons in vivo. Llorens-Martín M, Fuster-Matanzo A, Teixeira CM, Jurado-Arjona J, Ulloa F, DeFelipe J, Rábano A, Hernández F, Soriano E, Ávila J. Molecular Psychiatry. 2013 Apr; 18(4): 451-60. PMID:  23399915.

Abstract:

Our research group investigates the mechanisms that control adult hippocampal neurogenesis, both under physiological and pathological conditions. We perform in vivo and in vitro studies animal models of different diseases, and also use human brain samples. In particular, we are interested in determining the therapeutic potential of increasing adult hippocampal neurogenesis for the treatment of neurodegenerative diseases such as Alzheimer´s disease (AD) and other tauopathies, and psychiatric disorders. The hippocampus is one of the most affected areas in these diseases. This brain region plays a crucial role in learning and memory. Furthermore, a unique feature of this structure is the existence of adult neurogenesis. The process of adult hippocampal neurogenesis encompasses the birth and functional integration of newborn neurons throughout lifetime. Adult hippocampal circuit confers and extraordinary degree of plasticity to the circuit. 

Thus, we aim at developing strategies capable of increasing the functionality of newborn neurons.

Everybody is welcome!

Page 1 of 2 12 >>

To the top of this page.